-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
6a0684e
commit 681bad5
Showing
7 changed files
with
291 additions
and
0 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
0 A | ||
1 B | ||
2 C | ||
3 D | ||
4 E | ||
5 F | ||
6 G | ||
7 H | ||
8 I | ||
9 K | ||
10 L | ||
11 M | ||
12 N | ||
13 O | ||
14 P | ||
15 Q | ||
16 R | ||
17 S | ||
18 T | ||
19 U | ||
20 V | ||
21 W | ||
22 X | ||
23 Y |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
import cv2 | ||
from cvzone.HandTrackingModule import HandDetector | ||
import numpy as np | ||
import math | ||
import time | ||
|
||
cap = cv2.VideoCapture(0) | ||
|
||
detector = HandDetector(maxHands=1) | ||
offset = 20 | ||
imgSize = 300 | ||
folder = "Data/extra" | ||
counter = 0 | ||
|
||
while True: | ||
success, img = cap.read() | ||
hands, img = detector.findHands(img) | ||
if hands: | ||
|
||
hand = hands[0] | ||
x, y, w, h = hand['bbox'] | ||
|
||
imgWhite = np.ones((imgSize, imgSize, 3), np.uint8)*255 | ||
imgCrop = img[y - offset:y + h + offset, x - offset:x + w + offset] | ||
|
||
imgCropShape = imgCrop.shape | ||
|
||
aspectRatio = h/w | ||
|
||
imgH, imgW, imgC = imgCrop.shape | ||
if imgH > 0 and imgW > 0 and imgC > 0: | ||
if aspectRatio > 1: | ||
k = imgSize/h | ||
wCal = math.ceil(k*w) | ||
|
||
imgResize = cv2.resize(imgCrop,(wCal, imgSize)) | ||
imgResizeShape = imgResize.shape | ||
wGap = math.ceil((imgSize-wCal)/2) | ||
imgWhite[:, wGap:wCal+wGap] = imgResize | ||
else: | ||
k = imgSize / w | ||
hCal = math.ceil(k * h) | ||
imgResize = cv2.resize(imgCrop, (imgSize,hCal)) | ||
imgResizeShape = imgResize.shape | ||
hGap = math.ceil((imgSize - hCal) / 2) | ||
imgWhite[hGap:hCal + hGap,:] = imgResize | ||
|
||
cv2.imshow("ImageCrop", imgCrop) | ||
cv2.imshow("ImageWhite", imgWhite) | ||
|
||
cv2.imshow("Image",img) | ||
key = cv2.waitKey(1) | ||
if key == ord("s"): | ||
counter += 1 | ||
|
||
cv2.imwrite(f'{folder}/Image_{time.time()}.jpg', imgWhite) | ||
# raise Exception("Could not write image") | ||
print(counter) | ||
|
||
if cv2.waitKey(10) & 0xFF == ord('q'): | ||
cv2.destroyAllWindows() | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
import cv2 | ||
from cvzone.HandTrackingModule import HandDetector | ||
from cvzone.ClassificationModule import Classifier | ||
import numpy as np | ||
import math | ||
import time | ||
from pathlib import Path | ||
|
||
data_folder = Path("C:/Users/kbinw/Binwant/01 IGDTUW/8th Sem/Final YR Project/Code 4/Sign_lang_project/") | ||
|
||
cap = cv2.VideoCapture(0) | ||
detector = HandDetector(maxHands=1) | ||
trained_model = Classifier(data_folder/"Models/InceptionV2Model.h5") | ||
|
||
offset = 20 | ||
imgSize = 300 | ||
folder = "Data" | ||
counter = 0 | ||
labels = ['A','B','C','D','E','F','G','H','I','K', 'L', 'M','N','O','P','Q','R','S','T','U','V','W','X','Y'] | ||
|
||
while True: | ||
success, img = cap.read() | ||
imgOutput = img.copy() | ||
hands, img = detector.findHands(img) | ||
if hands: | ||
hand = hands[0] | ||
x, y, w, h = hand['bbox'] | ||
|
||
imgWhite = np.ones((imgSize, imgSize, 3), np.uint8)*255 | ||
imgCrop = img[y - offset:y + h + offset, x - offset:x + w + offset] | ||
|
||
imgCropShape = imgCrop.shape | ||
|
||
aspectRatio = h/w | ||
imgH, imgW, imgC = imgCrop.shape | ||
if imgH > 0 and imgW > 0 and imgC > 0: | ||
if aspectRatio > 1: | ||
k = imgSize/h | ||
wCal = math.ceil(k*w) | ||
imgResize = cv2.resize(imgCrop,(wCal, imgSize)) | ||
imgResizeShape = imgResize.shape | ||
wGap = math.ceil((imgSize-wCal)/2) | ||
imgWhite[:, wGap:wCal+wGap] = imgResize | ||
prediction, index = trained_model.getPrediction(imgWhite, draw=True) | ||
print(prediction, index) | ||
|
||
else: | ||
k = imgSize / w | ||
hCal = math.ceil(k * h) | ||
imgResize = cv2.resize(imgCrop, (imgSize,hCal)) | ||
imgResizeShape = imgResize.shape | ||
hGap = math.ceil((imgSize - hCal) / 2) | ||
imgWhite[hGap:hCal + hGap, :] = imgResize | ||
prediction, index = trained_model.getPrediction(imgWhite, draw=False) | ||
|
||
#cv2.rectangle(imgOutput, (x - offset+90, y - offset-50), (x-offset+50, y - offset-50+50), (255, 0, 255), cv2.FILLED) | ||
|
||
cv2.putText(imgOutput, labels[index], (x,y-26), cv2.FONT_HERSHEY_COMPLEX,2,(255,0,255), 2) | ||
cv2.rectangle(imgOutput, (x-offset, y-offset), (x + w + offset, y + h + offset), (255, 0, 255), 4) | ||
|
||
|
||
cv2.imshow("ImageWhite", imgWhite) | ||
|
||
cv2.imshow("Image", imgOutput) | ||
cv2.waitKey(1) | ||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
import random | ||
import pandas as pd | ||
import numpy as np | ||
import os | ||
import tensorflow | ||
import cv2 | ||
from tensorflow import keras | ||
from keras.layers import Input, Dense, Dropout, BatchNormalization, Flatten, Activation, GlobalAveragePooling2D,Conv2D, MaxPooling2D | ||
from keras.callbacks import EarlyStopping, ModelCheckpoint | ||
from keras.metrics import categorical_crossentropy | ||
from keras.preprocessing.image import ImageDataGenerator | ||
from keras.applications import MobileNet | ||
from keras.applications import InceptionResNetV2 | ||
from keras.applications.mobilenet import preprocess_input | ||
from keras.models import Sequential, Model | ||
from pathlib import Path | ||
import matplotlib.pyplot as plt | ||
|
||
data_folder = Path("C:/Users/kbinw/Binwant/01 IGDTUW/8th Sem/Final YR Project/Code 4/Sign_lang_project/") | ||
|
||
img_width, img_height = 224, 224 | ||
img_folder = data_folder/"Data" | ||
|
||
n_epoch = 20 | ||
batch_sz = 16 | ||
input_shape = (img_width, img_height, 3) | ||
input_tensor = Input(shape=(224, 224, 3)) | ||
|
||
# imports the mobilenet model and discards the last 1000 neuron layer | ||
base_model = InceptionResNetV2(input_tensor=input_tensor, weights='imagenet', include_top=False) | ||
|
||
model = Sequential() | ||
model.add(base_model) | ||
model.add(Dropout(0.5)) | ||
model.add(Flatten()) | ||
model.add(BatchNormalization()) | ||
model.add(Dense(1024,kernel_initializer='he_uniform')) | ||
model.add(BatchNormalization()) | ||
model.add(Activation('relu')) | ||
model.add(Dropout(0.5)) | ||
model.add(Dense(1024,kernel_initializer='he_uniform')) | ||
model.add(BatchNormalization()) | ||
model.add(Activation('relu')) | ||
model.add(Dropout(0.5)) | ||
model.add(Dense(1024,kernel_initializer='he_uniform')) | ||
model.add(BatchNormalization()) | ||
model.add(Activation('relu')) | ||
model.add(Dropout(0.5)) | ||
model.add(Dense(24,activation='softmax')) | ||
|
||
for layer in base_model.layers: | ||
layer.trainable = False | ||
|
||
model.summary() | ||
|
||
es = EarlyStopping(monitor='val_loss', mode='min', patience=5 , | ||
restore_best_weights=True, verbose=1) | ||
|
||
model.compile(optimizer='adam', | ||
loss='categorical_crossentropy', | ||
metrics=['acc', tensorflow.keras.metrics.AUC(name='auc'), tensorflow.keras.metrics.AUC(name='roc')]) | ||
|
||
train_datagen = ImageDataGenerator(preprocessing_function=preprocess_input, | ||
validation_split=0.2, | ||
featurewise_center=False, # set input mean to 0 over the dataset | ||
samplewise_center=False, # set each sample mean to 0 | ||
featurewise_std_normalization=False, # divide inputs by std of the dataset | ||
samplewise_std_normalization=False, # divide each input by its std | ||
zca_whitening=False, # apply ZCA whitening | ||
rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180) | ||
zoom_range=0.1, # Randomly zoom image | ||
width_shift_range=0.1, | ||
# randomly shift images horizontally (fraction of total width) | ||
height_shift_range=0.1, | ||
# randomly shift images vertically (fraction of total height) | ||
horizontal_flip=False, # randomly flip images | ||
vertical_flip=False) | ||
|
||
train_generator = train_datagen.flow_from_directory(img_folder, | ||
target_size=(224,224), | ||
color_mode='rgb', | ||
batch_size=batch_sz, | ||
class_mode='categorical', | ||
shuffle=True, | ||
subset='training') | ||
|
||
validation_generator = train_datagen.flow_from_directory(img_folder, | ||
target_size=(224, 224), | ||
color_mode='rgb', | ||
batch_size=batch_sz, | ||
class_mode='categorical', | ||
shuffle=False, | ||
subset='validation') | ||
|
||
step_size_train = train_generator.n//train_generator.batch_size | ||
|
||
history = model.fit(train_generator, | ||
validation_data=validation_generator, | ||
validation_steps=validation_generator.samples//validation_generator.batch_size, | ||
steps_per_epoch=step_size_train, | ||
epochs=n_epoch) | ||
|
||
# predictions = model.predict_generator(test_generator, test_generator.samples//batch_sz+1) | ||
# pred = np.argmax(predictions, axis=1) | ||
# cm = confusion_matrix(test_generator.classes, pred) | ||
# | ||
# print('Confusion Matrix') | ||
# print(cm) | ||
# print('Classification Report') | ||
# target_names = ['0', '1', '2', '3', '4'] | ||
# print(classification_report(test_generator.classes, pred, target_names=target_names)) | ||
# | ||
# disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=target_names) | ||
# disp.plot(cmap=plt.cm.Blues) | ||
# plt.show() | ||
# | ||
# summarize history for accuracy | ||
plt.plot(history.history['acc']) | ||
plt.plot(history.history['val_acc']) | ||
plt.title('Model Accuracy') | ||
plt.ylabel('accuracy') | ||
plt.xlabel('epoch') | ||
plt.legend(['train', 'val'], loc='upper left') | ||
plt.show() | ||
|
||
# summarize history for loss | ||
plt.plot(history.history['loss']) | ||
plt.plot(history.history['val_loss']) | ||
plt.title('Model Loss') | ||
plt.ylabel('loss') | ||
plt.xlabel('epoch') | ||
plt.legend(['train', 'val'], loc='upper left') | ||
plt.show() | ||
|
||
# Save the trained model for testing and classification in real-time | ||
model.save(data_folder/"Models/InceptionV2Model.h5") |