Skip to content

kazimahathir73/EssenceAI

Repository files navigation

EssenceAI

This is a web-based summarization app built with React and Bootstrap. The app allows users to input text and generate concise summaries using a custom-trained T5 model. The T5 model has been fine-tuned on the Gigaword dataset, which provides high-quality summarization results. The input and output sections are neatly arranged side by side for a user-friendly experience.

Video demo - https://youtu.be/L2xCct6soqM

Pretrained model -

Table of Contents

Features

  • User-friendly interface for text summarization
  • Input and output sections side by side
  • Summarization using a custom-trained T5 model fine-tuned on the Gigaword dataset
  • Ability to upload documents for summarization
  • Clean UI built with Bootstrap

Technologies Used

  • React (Frontend)
  • Django (Backend)
  • Bootstrap (CSS Framework)
  • Python for model training
  • T5 model fine-tuned on the Gigaword dataset

Dataset

This project uses the Gigaword dataset, which consists of pairs of long text articles and their corresponding summaries. The T5 model was fine-tuned on this dataset to improve summarization capabilities and generate concise summaries based on the user's input.

Dataset paper - Paper Link

Dataset download - Kaggle Dataset Link

Installation

To get started with the project:

  1. Clone the repository:

    git clone https://github.com/kazimahathir73/EssenceAI.git
    cd EssenceAI
  2. Install frontend dependencies:

    cd frontend
    npm install
  3. Install backend dependencies:

    cd ../backend
    pip install -r requirements.txt
  4. Run the frontend and backend servers:

    • Frontend (React):

      cd frontend
      npm start
    • Backend (Django):

      cd backend
      python manage.py runserver

Project Structure

├── backend
│   ├── model.py
│   ├── admin.py
│   ├── views.py
│   ├── urls.py
│   └── ...
├── frontend
│   ├── public
│   │   └── images
│   │   └── videos
│   │   └── .... 
│   ├── src
│   │   └── components
│   │       └── homepage.css
│   │       └── homepage.js
│   │       └── summary.js
│   │       └── summary.css
│   │       └── ....    
│   │   └── Apps.js
│   │   └── index.js          
│   └── ...
├── main
│   ├── asgi.py
│   ├── setting.py
│   ├── urls.py
│   ├── wsgi.py
│   └── ...
├── summarizer_model
│   ├── weights
│   ├── gigadata_corpus.csv
│   ├── response.py
│   ├── train_model.ipynb
│   └── ...
├── README.md
└── ...

Contributing

Contributions are welcome! If you find any bugs or want to add a new feature:

  1. Fork the repository.
  2. Create a new branch (git checkout -b feature-branch).
  3. Make your changes and commit them (git commit -m 'Add some feature').
  4. Push to the branch (git push origin feature-branch).
  5. Open a Pull Request.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published