Skip to content

Repository for the paper: Ho, J.C. (2020) How biased is the sample? Reverse engineering the ranking algorithm of Facebook’s Graph application programming interface. Big Data & Society 7(1). URL: https://journals.sagepub.com/doi/full/10.1177/2053951720905874

Notifications You must be signed in to change notification settings

justinchuntingho/Reverse-engineering-the-ranking-algorithm-of-Facebook-s-Graph-API

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 

Repository files navigation

How biased is the sample? Reverse engineering the ranking algorithm of Facebook’s Graph application programming interface

Repository for the paper: Ho, J.C. (2020) How biased is the sample? Reverse engineering the ranking algorithm of Facebook’s Graph application programming interface. Big Data & Society 7(1). URL: https://journals.sagepub.com/doi/full/10.1177/2053951720905874

All R scripts are located in the R folder. Data in the R/data subfolder.

List of files:

  • bootstrap.R produces the comparison of likes, comments, and shares, word clouds, and also the top term analysis.
  • logisitic.R produces the logisitic regression models.
  • sentanalysis.R produces the sentiment analysis.

All scripts are tested on 19 February 2020 with the following session:

R version 3.6.0 (2019-04-26)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.2

Matrix products: default
BLAS:   /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

Random number generation:
 RNG:     Mersenne-Twister
 Normal:  Inversion
 Sample:  Rounding

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] tidytext_0.2.0  scales_1.1.0    stringr_1.4.0   readtext_0.74   caret_6.0-84   
 [6] lattice_0.20-38 pscl_1.5.2      lmtest_0.9-37   zoo_1.8-5       stargazer_5.2.2
[11] qwraps2_0.4.1   Kendall_2.2     quanteda_1.5.2  gridExtra_2.3   ggplot2_3.2.1  
[16] reshape2_1.4.3  tidyr_0.8.3     magrittr_1.5    rlang_0.4.4     dplyr_0.8.3    
[21] lubridate_1.7.4 ROCR_1.0-7      gplots_3.0.1.1

loaded via a namespace (and not attached):
 [1] httr_1.4.1          splines_3.6.0       foreach_1.4.8       prodlim_2018.04.18
 [5] gtools_3.8.1        RcppParallel_4.4.4  assertthat_0.2.1    stats4_3.6.0       
 [9] yaml_2.2.1          sessioninfo_1.1.1   ipred_0.9-9         backports_1.1.4    
[13] pillar_1.4.3        glue_1.3.1          digest_0.6.24       colorspace_1.4-1   
[17] recipes_0.1.5       Matrix_1.2-17       plyr_1.8.5          timeDate_3043.102  
[21] pkgconfig_2.0.3     ISOcodes_2019.12.22 broom_0.5.2         purrr_0.3.3        
[25] gdata_2.18.0        gower_0.2.1         lava_1.6.5          tibble_2.1.3       
[29] generics_0.0.2      farver_2.0.3        withr_2.1.2         nnet_7.3-12        
[33] lazyeval_0.2.2      cli_2.0.1           survival_2.44-1.1   crayon_1.3.4       
[37] tokenizers_0.2.1    janeaustenr_0.1.5   stopwords_1.0       fansi_0.4.1        
[41] nlme_3.1-140        SnowballC_0.6.0     MASS_7.3-51.4       class_7.3-15       
[45] tools_3.6.0         data.table_1.12.8   lifecycle_0.1.0     munsell_0.5.0      
[49] compiler_3.6.0      e1071_1.7-1         caTools_1.17.1.2    grid_3.6.0         
[53] iterators_1.0.12    rstudioapi_0.10     bitops_1.0-6        labeling_0.3       
[57] boot_1.3-22         gtable_0.3.0        ModelMetrics_1.2.2  codetools_0.2-16   
[61] R6_2.4.1            knitr_1.23          fastmatch_1.1-0     KernSmooth_2.23-15
[65] stringi_1.4.5       Rcpp_1.0.3          spacyr_1.2          rpart_4.1-15       
[69] tidyselect_0.2.5    xfun_0.7

About

Repository for the paper: Ho, J.C. (2020) How biased is the sample? Reverse engineering the ranking algorithm of Facebook’s Graph application programming interface. Big Data & Society 7(1). URL: https://journals.sagepub.com/doi/full/10.1177/2053951720905874

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages