forked from Smorodov/Multitarget-tracker
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request Smorodov#436 from Nuzhny007/master
YOLOv8 instance segmentation
- Loading branch information
Showing
20 changed files
with
1,427 additions
and
251 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file was deleted.
Oops, something went wrong.
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
person | ||
bicycle | ||
car | ||
motorbike | ||
aeroplane | ||
bus | ||
train | ||
truck | ||
boat |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
import sys | ||
import glob | ||
import getopt | ||
import numpy as np | ||
import cv2 as cv | ||
import pymtracking as mt | ||
|
||
print("OpenCV Version: {}".format(cv.__version__)) | ||
|
||
|
||
def draw_regions(img, regions, color): | ||
for reg in regions: | ||
brect = reg.brect | ||
cv.rectangle(img, (brect.x, brect.y, brect.width, brect.height), color, 2) | ||
|
||
|
||
def draw_tracks(img, tracks, fps): | ||
for track in tracks: | ||
brect = track.GetBoundingRect() | ||
if track.isStatic: | ||
cv.rectangle(img, (brect.x, brect.y, brect.width, brect.height), (255, 0, 255), 2) | ||
elif track.IsRobust(int(fps / 4), 0.7, (0.1, 10.), 3): | ||
cv.rectangle(img, (brect.x, brect.y, brect.width, brect.height), (0, 255, 0), 2) | ||
trajectory = track.GetTrajectory() | ||
for i in range(0, len(trajectory) - 1): | ||
cv.line(img, trajectory[i], trajectory[i+1], (0, 255, 0), 1) | ||
|
||
|
||
def main(): | ||
args, video_src = getopt.getopt(sys.argv[1:], '', ['cascade=', 'nested-cascade=']) | ||
try: | ||
video_src = video_src[0] | ||
except: | ||
video_src = 0 | ||
args = dict(args) | ||
|
||
cam = cv.VideoCapture(video_src) | ||
|
||
_ret, img = cam.read() | ||
print("cam.read res = ", _ret, ", im size = ", img.shape) | ||
|
||
fps = cam.get(cv.CAP_PROP_FPS) | ||
print(video_src, " fps = ", fps) | ||
|
||
configBGFG = mt.KeyVal() | ||
configBGFG.Add('useRotatedRect', '20') | ||
configBGFG.Add('history', '1000') | ||
configBGFG.Add("nmixtures", "3") | ||
configBGFG.Add("backgroundRatio", "0.7") | ||
configBGFG.Add("noiseSigma", "0") | ||
print("configBGFG = ", configBGFG) | ||
mdetector = mt.BaseDetector(mt.BaseDetector.Detectors.MOG, configBGFG, img) | ||
print("CanGrayProcessing: ", mdetector.CanGrayProcessing()) | ||
mdetector.SetMinObjectSize((1, 1)) | ||
|
||
tracker_settings = mt.TrackerSettings() | ||
|
||
tracker_settings.SetDistance(mt.MTracker.DistRects) | ||
tracker_settings.kalmanType = mt.MTracker.KalmanLinear | ||
tracker_settings.filterGoal = mt.MTracker.FilterCenter | ||
tracker_settings.lostTrackType = mt.MTracker.TrackNone | ||
tracker_settings.matchType = mt.MTracker.MatchHungrian | ||
tracker_settings.useAcceleration = False | ||
tracker_settings.dt = 0.5 | ||
tracker_settings.accelNoiseMag = 0.1 | ||
tracker_settings.distThres = 0.95 | ||
tracker_settings.minAreaRadiusPix = img.shape[0] / 5. | ||
tracker_settings.minAreaRadiusK = 0.8 | ||
tracker_settings.useAbandonedDetection = False | ||
tracker_settings.maximumAllowedSkippedFrames = int(2 * fps) | ||
tracker_settings.maxTraceLength = int(2 * fps) | ||
|
||
mtracker = mt.MTracker(tracker_settings) | ||
|
||
while True: | ||
_ret, img = cam.read() | ||
if _ret: | ||
print("cam.read res = ", _ret, ", im size = ", img.shape, ", fps = ", fps) | ||
else: | ||
break | ||
|
||
mdetector.Detect(img) | ||
regions = mdetector.GetDetects() | ||
print("mdetector.Detect:", len(regions)) | ||
|
||
mtracker.Update(regions, img, fps) | ||
tracks = mtracker.GetTracks() | ||
print("mtracker.Update:", len(tracks)) | ||
|
||
vis = img.copy() | ||
# draw_regions(vis, regions, (255, 0, 255)) | ||
draw_tracks(vis, tracks, fps) | ||
cv.imshow('detect', vis) | ||
|
||
if cv.waitKey(int(1000 / fps)) == 27: | ||
break | ||
|
||
print('Done') | ||
|
||
|
||
if __name__ == '__main__': | ||
main() | ||
cv.destroyAllWindows() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
[detection] | ||
|
||
#----------------------------- | ||
# opencv_dnn = 12 | ||
# darknet_cudnn = 10 | ||
# tensorrt = 11 | ||
detector_backend = 10 | ||
|
||
#----------------------------- | ||
# Target and backend for opencv_dnn detector | ||
# DNN_TARGET_CPU | ||
# DNN_TARGET_OPENCL | ||
# DNN_TARGET_OPENCL_FP16 | ||
# DNN_TARGET_MYRIAD | ||
# DNN_TARGET_CUDA | ||
# DNN_TARGET_CUDA_FP16 | ||
ocv_dnn_target = DNN_TARGET_CPU | ||
|
||
# DNN_BACKEND_DEFAULT | ||
# DNN_BACKEND_HALIDE | ||
# DNN_BACKEND_INFERENCE_ENGINE | ||
# DNN_BACKEND_OPENCV | ||
# DNN_BACKEND_VKCOM | ||
# DNN_BACKEND_CUDA | ||
# DNN_BACKEND_INFERENCE_ENGINE_NGRAPH | ||
# DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 | ||
ocv_dnn_backend = DNN_BACKEND_OPENCV | ||
|
||
#----------------------------- | ||
# nn_weights = data/coco/yolov7.onnx | ||
# nn_config = data/coco/yolov7.onnx | ||
|
||
# nn_weights = data/coco/yolov6s.onnx | ||
# nn_config = data/coco/yolov6s.onnx | ||
|
||
nn_weights = C:/work/home/mtracker/Multitarget-tracker/data/yolov4.weights | ||
nn_config = C:/work/home/mtracker/Multitarget-tracker/data/yolov4.cfg | ||
|
||
class_names = C:/work/home/mtracker/Multitarget-tracker/data/coco.names | ||
|
||
#----------------------------- | ||
confidence_threshold = 0.2 | ||
|
||
max_crop_ratio = -1 | ||
max_batch = 1 | ||
gpu_id = 0 | ||
|
||
#----------------------------- | ||
# YOLOV3 | ||
# YOLOV4 | ||
# YOLOV5 | ||
net_type = YOLOV4 | ||
|
||
#----------------------------- | ||
# INT8 | ||
# FP16 | ||
# FP32 | ||
inference_precision = FP32 | ||
|
||
#----------------------------- | ||
# Detect only set of types, ";" | ||
white_list = | ||
|
||
#----------------------------- | ||
# For TensorRT optimization, bytes | ||
video_memory = 0; | ||
|
||
|
||
[tracking] | ||
|
||
#----------------------------- | ||
# DistCenters = 0 // Euclidean distance between centers, pixels | ||
# DistRects = 1 // Euclidean distance between bounding rectangles, pixels | ||
# DistJaccard = 2 // Intersection over Union, IoU, [0, 1] | ||
# DistHist = 3 // Bhatacharia distance between histograms, [0, 1] | ||
|
||
distance_type = 0 | ||
|
||
#----------------------------- | ||
# KalmanLinear = 0 | ||
# KalmanUnscented = 1 | ||
|
||
kalman_type = 0 | ||
|
||
#----------------------------- | ||
# FilterCenter = 0 | ||
# FilterRect = 1 | ||
|
||
filter_goal = 0 | ||
|
||
#----------------------------- | ||
# TrackNone = 0 | ||
# TrackKCF = 1 | ||
# TrackMIL = 2 | ||
# TrackMedianFlow = 3 | ||
# TrackGOTURN = 4 | ||
# TrackMOSSE = 5 | ||
# TrackCSRT = 6 | ||
# TrackDAT = 7 | ||
# TrackSTAPLE = 8 | ||
# TrackLDES = 9 | ||
# Used if filter_goal == FilterRect | ||
|
||
lost_track_type = 0 | ||
|
||
#----------------------------- | ||
# MatchHungrian = 0 | ||
# MatchBipart = 1 | ||
|
||
match_type = 0 | ||
|
||
#----------------------------- | ||
# Use constant acceleration motion model: | ||
# 0 - unused (stable) | ||
# 1 - use acceleration in Kalman filter (experimental) | ||
use_aceleration = 0 | ||
|
||
#----------------------------- | ||
# Delta time for Kalman filter | ||
delta_time = 0.4 | ||
|
||
#----------------------------- | ||
# Accel noise magnitude for Kalman filter | ||
accel_noise = 0.2 | ||
|
||
#----------------------------- | ||
# Distance threshold between region and object on two frames | ||
dist_thresh = 0.8 | ||
|
||
#----------------------------- | ||
# If this value > 0 than will be used circle with this radius | ||
# If this value <= 0 than will be used ellipse with size (3*vx, 3*vy), vx and vy - horizontal and vertical speed in pixelsa | ||
min_area_radius_pix = -1 | ||
|
||
#----------------------------- | ||
# Minimal area radius in ration for object size. Used if min_area_radius_pix < 0 | ||
min_area_radius_k = 0.8 | ||
|
||
#----------------------------- | ||
# If the object do not assignment more than this frames then it will be removed | ||
max_skip_frames = 50 | ||
|
||
#----------------------------- | ||
# The maximum trajectory length | ||
max_trace_len = 50 | ||
|
||
#----------------------------- | ||
# Detection abandoned objects | ||
detect_abandoned = 0 | ||
# After this time (in seconds) the object is considered abandoned | ||
min_static_time = 5 | ||
# After this time (in seconds) the abandoned object will be removed | ||
max_static_time = 25 | ||
# Speed in pixels. If speed of object is more that this value than object is non static | ||
max_speed_for_static = 10 |
Oops, something went wrong.