|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "#import libabry\n", |
| 10 | + "\n", |
| 11 | + "import pandas as pd\n", |
| 12 | + "import numpy as np\n", |
| 13 | + "import seaborn as sb\n", |
| 14 | + "import matplotlib.pyplot as plt\n", |
| 15 | + "from sklearn.linear_model import LogisticRegression\n", |
| 16 | + "from sklearn.model_selection import train_test_split\n", |
| 17 | + "from sklearn.metrics import confusion_matrix,accuracy_score\n", |
| 18 | + "from sklearn.metrics import classification_report" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "code", |
| 23 | + "execution_count": 2, |
| 24 | + "metadata": {}, |
| 25 | + "outputs": [], |
| 26 | + "source": [ |
| 27 | + "#read file\n", |
| 28 | + "election_data = pd.read_csv(\"~/Downloads/Data Science/data set/election_data.csv\")" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "code", |
| 33 | + "execution_count": 3, |
| 34 | + "metadata": {}, |
| 35 | + "outputs": [ |
| 36 | + { |
| 37 | + "data": { |
| 38 | + "text/html": [ |
| 39 | + "<div>\n", |
| 40 | + "<style scoped>\n", |
| 41 | + " .dataframe tbody tr th:only-of-type {\n", |
| 42 | + " vertical-align: middle;\n", |
| 43 | + " }\n", |
| 44 | + "\n", |
| 45 | + " .dataframe tbody tr th {\n", |
| 46 | + " vertical-align: top;\n", |
| 47 | + " }\n", |
| 48 | + "\n", |
| 49 | + " .dataframe thead th {\n", |
| 50 | + " text-align: right;\n", |
| 51 | + " }\n", |
| 52 | + "</style>\n", |
| 53 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 54 | + " <thead>\n", |
| 55 | + " <tr style=\"text-align: right;\">\n", |
| 56 | + " <th></th>\n", |
| 57 | + " <th>Election-id</th>\n", |
| 58 | + " <th>Result</th>\n", |
| 59 | + " <th>Year</th>\n", |
| 60 | + " <th>Amount Spent</th>\n", |
| 61 | + " <th>Popularity Rank</th>\n", |
| 62 | + " </tr>\n", |
| 63 | + " </thead>\n", |
| 64 | + " <tbody>\n", |
| 65 | + " <tr>\n", |
| 66 | + " <th>0</th>\n", |
| 67 | + " <td>122</td>\n", |
| 68 | + " <td>0</td>\n", |
| 69 | + " <td>32</td>\n", |
| 70 | + " <td>3.81</td>\n", |
| 71 | + " <td>3</td>\n", |
| 72 | + " </tr>\n", |
| 73 | + " <tr>\n", |
| 74 | + " <th>1</th>\n", |
| 75 | + " <td>315</td>\n", |
| 76 | + " <td>1</td>\n", |
| 77 | + " <td>48</td>\n", |
| 78 | + " <td>6.32</td>\n", |
| 79 | + " <td>2</td>\n", |
| 80 | + " </tr>\n", |
| 81 | + " <tr>\n", |
| 82 | + " <th>2</th>\n", |
| 83 | + " <td>201</td>\n", |
| 84 | + " <td>1</td>\n", |
| 85 | + " <td>51</td>\n", |
| 86 | + " <td>3.67</td>\n", |
| 87 | + " <td>1</td>\n", |
| 88 | + " </tr>\n", |
| 89 | + " <tr>\n", |
| 90 | + " <th>3</th>\n", |
| 91 | + " <td>965</td>\n", |
| 92 | + " <td>0</td>\n", |
| 93 | + " <td>40</td>\n", |
| 94 | + " <td>2.93</td>\n", |
| 95 | + " <td>4</td>\n", |
| 96 | + " </tr>\n", |
| 97 | + " <tr>\n", |
| 98 | + " <th>4</th>\n", |
| 99 | + " <td>410</td>\n", |
| 100 | + " <td>1</td>\n", |
| 101 | + " <td>52</td>\n", |
| 102 | + " <td>3.60</td>\n", |
| 103 | + " <td>1</td>\n", |
| 104 | + " </tr>\n", |
| 105 | + " </tbody>\n", |
| 106 | + "</table>\n", |
| 107 | + "</div>" |
| 108 | + ], |
| 109 | + "text/plain": [ |
| 110 | + " Election-id Result Year Amount Spent Popularity Rank\n", |
| 111 | + "0 122 0 32 3.81 3\n", |
| 112 | + "1 315 1 48 6.32 2\n", |
| 113 | + "2 201 1 51 3.67 1\n", |
| 114 | + "3 965 0 40 2.93 4\n", |
| 115 | + "4 410 1 52 3.60 1" |
| 116 | + ] |
| 117 | + }, |
| 118 | + "execution_count": 3, |
| 119 | + "metadata": {}, |
| 120 | + "output_type": "execute_result" |
| 121 | + } |
| 122 | + ], |
| 123 | + "source": [ |
| 124 | + "#read to 5 data\n", |
| 125 | + "election_data.head()" |
| 126 | + ] |
| 127 | + }, |
| 128 | + { |
| 129 | + "cell_type": "code", |
| 130 | + "execution_count": 4, |
| 131 | + "metadata": {}, |
| 132 | + "outputs": [ |
| 133 | + { |
| 134 | + "name": "stdout", |
| 135 | + "output_type": "stream", |
| 136 | + "text": [ |
| 137 | + "<class 'pandas.core.frame.DataFrame'>\n", |
| 138 | + "RangeIndex: 10 entries, 0 to 9\n", |
| 139 | + "Data columns (total 5 columns):\n", |
| 140 | + " # Column Non-Null Count Dtype \n", |
| 141 | + "--- ------ -------------- ----- \n", |
| 142 | + " 0 Election-id 10 non-null int64 \n", |
| 143 | + " 1 Result 10 non-null int64 \n", |
| 144 | + " 2 Year 10 non-null int64 \n", |
| 145 | + " 3 Amount Spent 10 non-null float64\n", |
| 146 | + " 4 Popularity Rank 10 non-null int64 \n", |
| 147 | + "dtypes: float64(1), int64(4)\n", |
| 148 | + "memory usage: 528.0 bytes\n" |
| 149 | + ] |
| 150 | + } |
| 151 | + ], |
| 152 | + "source": [ |
| 153 | + "election_data.info()" |
| 154 | + ] |
| 155 | + }, |
| 156 | + { |
| 157 | + "cell_type": "code", |
| 158 | + "execution_count": 5, |
| 159 | + "metadata": {}, |
| 160 | + "outputs": [ |
| 161 | + { |
| 162 | + "data": { |
| 163 | + "text/plain": [ |
| 164 | + "Election-id 0\n", |
| 165 | + "Result 0\n", |
| 166 | + "Year 0\n", |
| 167 | + "Amount Spent 0\n", |
| 168 | + "Popularity Rank 0\n", |
| 169 | + "dtype: int64" |
| 170 | + ] |
| 171 | + }, |
| 172 | + "execution_count": 5, |
| 173 | + "metadata": {}, |
| 174 | + "output_type": "execute_result" |
| 175 | + } |
| 176 | + ], |
| 177 | + "source": [ |
| 178 | + "#null value check\n", |
| 179 | + "election_data.isna().sum()" |
| 180 | + ] |
| 181 | + }, |
| 182 | + { |
| 183 | + "cell_type": "code", |
| 184 | + "execution_count": 6, |
| 185 | + "metadata": {}, |
| 186 | + "outputs": [], |
| 187 | + "source": [ |
| 188 | + "#set depend and independent variable\n", |
| 189 | + "y = election_data.Result\n", |
| 190 | + "election_data.drop(['Result'], axis=1, inplace=True)\n", |
| 191 | + "x = election_data" |
| 192 | + ] |
| 193 | + }, |
| 194 | + { |
| 195 | + "cell_type": "code", |
| 196 | + "execution_count": 7, |
| 197 | + "metadata": {}, |
| 198 | + "outputs": [ |
| 199 | + { |
| 200 | + "data": { |
| 201 | + "text/plain": [ |
| 202 | + "0 0\n", |
| 203 | + "1 1\n", |
| 204 | + "2 1\n", |
| 205 | + "3 0\n", |
| 206 | + "4 1\n", |
| 207 | + "5 0\n", |
| 208 | + "6 1\n", |
| 209 | + "7 1\n", |
| 210 | + "8 1\n", |
| 211 | + "9 0\n", |
| 212 | + "Name: Result, dtype: int64" |
| 213 | + ] |
| 214 | + }, |
| 215 | + "execution_count": 7, |
| 216 | + "metadata": {}, |
| 217 | + "output_type": "execute_result" |
| 218 | + } |
| 219 | + ], |
| 220 | + "source": [ |
| 221 | + "y" |
| 222 | + ] |
| 223 | + }, |
| 224 | + { |
| 225 | + "cell_type": "code", |
| 226 | + "execution_count": 8, |
| 227 | + "metadata": {}, |
| 228 | + "outputs": [], |
| 229 | + "source": [ |
| 230 | + "#split data\n", |
| 231 | + "X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=1, stratify=y)" |
| 232 | + ] |
| 233 | + }, |
| 234 | + { |
| 235 | + "cell_type": "code", |
| 236 | + "execution_count": 9, |
| 237 | + "metadata": {}, |
| 238 | + "outputs": [ |
| 239 | + { |
| 240 | + "data": { |
| 241 | + "text/plain": [ |
| 242 | + "LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n", |
| 243 | + " intercept_scaling=1, l1_ratio=None, max_iter=100,\n", |
| 244 | + " multi_class='auto', n_jobs=None, penalty='l2',\n", |
| 245 | + " random_state=None, solver='lbfgs', tol=0.0001, verbose=0,\n", |
| 246 | + " warm_start=False)" |
| 247 | + ] |
| 248 | + }, |
| 249 | + "execution_count": 9, |
| 250 | + "metadata": {}, |
| 251 | + "output_type": "execute_result" |
| 252 | + } |
| 253 | + ], |
| 254 | + "source": [ |
| 255 | + "#create Logistic Regression model\n", |
| 256 | + "logmodel = LogisticRegression()\n", |
| 257 | + "logmodel.fit(X_train, y_train)" |
| 258 | + ] |
| 259 | + }, |
| 260 | + { |
| 261 | + "cell_type": "code", |
| 262 | + "execution_count": 10, |
| 263 | + "metadata": {}, |
| 264 | + "outputs": [], |
| 265 | + "source": [ |
| 266 | + "#predict on test data\n", |
| 267 | + "predictions = logmodel.predict(X_test)" |
| 268 | + ] |
| 269 | + }, |
| 270 | + { |
| 271 | + "cell_type": "code", |
| 272 | + "execution_count": 11, |
| 273 | + "metadata": {}, |
| 274 | + "outputs": [ |
| 275 | + { |
| 276 | + "name": "stdout", |
| 277 | + "output_type": "stream", |
| 278 | + "text": [ |
| 279 | + " precision recall f1-score support\n", |
| 280 | + "\n", |
| 281 | + " 0 1.00 1.00 1.00 1\n", |
| 282 | + " 1 1.00 1.00 1.00 1\n", |
| 283 | + "\n", |
| 284 | + " accuracy 1.00 2\n", |
| 285 | + " macro avg 1.00 1.00 1.00 2\n", |
| 286 | + "weighted avg 1.00 1.00 1.00 2\n", |
| 287 | + "\n", |
| 288 | + "[[1 0]\n", |
| 289 | + " [0 1]]\n", |
| 290 | + "1.0\n" |
| 291 | + ] |
| 292 | + } |
| 293 | + ], |
| 294 | + "source": [ |
| 295 | + "#cnfusion matrix, accurarcy\n", |
| 296 | + "\n", |
| 297 | + "print(classification_report(y_test, predictions))\n", |
| 298 | + "print(confusion_matrix(y_test, predictions))\n", |
| 299 | + "print(accuracy_score(y_test, predictions))" |
| 300 | + ] |
| 301 | + } |
| 302 | + ], |
| 303 | + "metadata": { |
| 304 | + "kernelspec": { |
| 305 | + "display_name": "Python 3", |
| 306 | + "language": "python", |
| 307 | + "name": "python3" |
| 308 | + }, |
| 309 | + "language_info": { |
| 310 | + "codemirror_mode": { |
| 311 | + "name": "ipython", |
| 312 | + "version": 3 |
| 313 | + }, |
| 314 | + "file_extension": ".py", |
| 315 | + "mimetype": "text/x-python", |
| 316 | + "name": "python", |
| 317 | + "nbconvert_exporter": "python", |
| 318 | + "pygments_lexer": "ipython3", |
| 319 | + "version": "3.6.8" |
| 320 | + } |
| 321 | + }, |
| 322 | + "nbformat": 4, |
| 323 | + "nbformat_minor": 4 |
| 324 | +} |
0 commit comments