|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 6, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "# import numpy package for arrays and stuff \n", |
| 10 | + "import numpy as np \n", |
| 11 | + "\n", |
| 12 | + "# import matplotlib.pyplot for plotting our result \n", |
| 13 | + "import matplotlib.pyplot as plt \n", |
| 14 | + "\n", |
| 15 | + "# import pandas for importing csv files \n", |
| 16 | + "import pandas as pd \n", |
| 17 | + "\n", |
| 18 | + "# import the regressor \n", |
| 19 | + "from sklearn.tree import DecisionTreeRegressor " |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "code", |
| 24 | + "execution_count": 7, |
| 25 | + "metadata": {}, |
| 26 | + "outputs": [], |
| 27 | + "source": [ |
| 28 | + "# import dataset \n", |
| 29 | + "dataset = pd.read_csv('~/Downloads/Data Science/data set/Company_Data.csv') " |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "code", |
| 34 | + "execution_count": 8, |
| 35 | + "metadata": {}, |
| 36 | + "outputs": [ |
| 37 | + { |
| 38 | + "data": { |
| 39 | + "text/html": [ |
| 40 | + "<div>\n", |
| 41 | + "<style scoped>\n", |
| 42 | + " .dataframe tbody tr th:only-of-type {\n", |
| 43 | + " vertical-align: middle;\n", |
| 44 | + " }\n", |
| 45 | + "\n", |
| 46 | + " .dataframe tbody tr th {\n", |
| 47 | + " vertical-align: top;\n", |
| 48 | + " }\n", |
| 49 | + "\n", |
| 50 | + " .dataframe thead th {\n", |
| 51 | + " text-align: right;\n", |
| 52 | + " }\n", |
| 53 | + "</style>\n", |
| 54 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 55 | + " <thead>\n", |
| 56 | + " <tr style=\"text-align: right;\">\n", |
| 57 | + " <th></th>\n", |
| 58 | + " <th>Sales</th>\n", |
| 59 | + " <th>CompPrice</th>\n", |
| 60 | + " <th>Income</th>\n", |
| 61 | + " <th>Advertising</th>\n", |
| 62 | + " <th>Population</th>\n", |
| 63 | + " <th>Price</th>\n", |
| 64 | + " <th>ShelveLoc</th>\n", |
| 65 | + " <th>Age</th>\n", |
| 66 | + " <th>Education</th>\n", |
| 67 | + " <th>Urban</th>\n", |
| 68 | + " <th>US</th>\n", |
| 69 | + " </tr>\n", |
| 70 | + " </thead>\n", |
| 71 | + " <tbody>\n", |
| 72 | + " <tr>\n", |
| 73 | + " <th>0</th>\n", |
| 74 | + " <td>9.50</td>\n", |
| 75 | + " <td>138</td>\n", |
| 76 | + " <td>73</td>\n", |
| 77 | + " <td>11</td>\n", |
| 78 | + " <td>276</td>\n", |
| 79 | + " <td>120</td>\n", |
| 80 | + " <td>Bad</td>\n", |
| 81 | + " <td>42</td>\n", |
| 82 | + " <td>17</td>\n", |
| 83 | + " <td>Yes</td>\n", |
| 84 | + " <td>Yes</td>\n", |
| 85 | + " </tr>\n", |
| 86 | + " <tr>\n", |
| 87 | + " <th>1</th>\n", |
| 88 | + " <td>11.22</td>\n", |
| 89 | + " <td>111</td>\n", |
| 90 | + " <td>48</td>\n", |
| 91 | + " <td>16</td>\n", |
| 92 | + " <td>260</td>\n", |
| 93 | + " <td>83</td>\n", |
| 94 | + " <td>Good</td>\n", |
| 95 | + " <td>65</td>\n", |
| 96 | + " <td>10</td>\n", |
| 97 | + " <td>Yes</td>\n", |
| 98 | + " <td>Yes</td>\n", |
| 99 | + " </tr>\n", |
| 100 | + " <tr>\n", |
| 101 | + " <th>2</th>\n", |
| 102 | + " <td>10.06</td>\n", |
| 103 | + " <td>113</td>\n", |
| 104 | + " <td>35</td>\n", |
| 105 | + " <td>10</td>\n", |
| 106 | + " <td>269</td>\n", |
| 107 | + " <td>80</td>\n", |
| 108 | + " <td>Medium</td>\n", |
| 109 | + " <td>59</td>\n", |
| 110 | + " <td>12</td>\n", |
| 111 | + " <td>Yes</td>\n", |
| 112 | + " <td>Yes</td>\n", |
| 113 | + " </tr>\n", |
| 114 | + " <tr>\n", |
| 115 | + " <th>3</th>\n", |
| 116 | + " <td>7.40</td>\n", |
| 117 | + " <td>117</td>\n", |
| 118 | + " <td>100</td>\n", |
| 119 | + " <td>4</td>\n", |
| 120 | + " <td>466</td>\n", |
| 121 | + " <td>97</td>\n", |
| 122 | + " <td>Medium</td>\n", |
| 123 | + " <td>55</td>\n", |
| 124 | + " <td>14</td>\n", |
| 125 | + " <td>Yes</td>\n", |
| 126 | + " <td>Yes</td>\n", |
| 127 | + " </tr>\n", |
| 128 | + " <tr>\n", |
| 129 | + " <th>4</th>\n", |
| 130 | + " <td>4.15</td>\n", |
| 131 | + " <td>141</td>\n", |
| 132 | + " <td>64</td>\n", |
| 133 | + " <td>3</td>\n", |
| 134 | + " <td>340</td>\n", |
| 135 | + " <td>128</td>\n", |
| 136 | + " <td>Bad</td>\n", |
| 137 | + " <td>38</td>\n", |
| 138 | + " <td>13</td>\n", |
| 139 | + " <td>Yes</td>\n", |
| 140 | + " <td>No</td>\n", |
| 141 | + " </tr>\n", |
| 142 | + " <tr>\n", |
| 143 | + " <th>...</th>\n", |
| 144 | + " <td>...</td>\n", |
| 145 | + " <td>...</td>\n", |
| 146 | + " <td>...</td>\n", |
| 147 | + " <td>...</td>\n", |
| 148 | + " <td>...</td>\n", |
| 149 | + " <td>...</td>\n", |
| 150 | + " <td>...</td>\n", |
| 151 | + " <td>...</td>\n", |
| 152 | + " <td>...</td>\n", |
| 153 | + " <td>...</td>\n", |
| 154 | + " <td>...</td>\n", |
| 155 | + " </tr>\n", |
| 156 | + " <tr>\n", |
| 157 | + " <th>395</th>\n", |
| 158 | + " <td>12.57</td>\n", |
| 159 | + " <td>138</td>\n", |
| 160 | + " <td>108</td>\n", |
| 161 | + " <td>17</td>\n", |
| 162 | + " <td>203</td>\n", |
| 163 | + " <td>128</td>\n", |
| 164 | + " <td>Good</td>\n", |
| 165 | + " <td>33</td>\n", |
| 166 | + " <td>14</td>\n", |
| 167 | + " <td>Yes</td>\n", |
| 168 | + " <td>Yes</td>\n", |
| 169 | + " </tr>\n", |
| 170 | + " <tr>\n", |
| 171 | + " <th>396</th>\n", |
| 172 | + " <td>6.14</td>\n", |
| 173 | + " <td>139</td>\n", |
| 174 | + " <td>23</td>\n", |
| 175 | + " <td>3</td>\n", |
| 176 | + " <td>37</td>\n", |
| 177 | + " <td>120</td>\n", |
| 178 | + " <td>Medium</td>\n", |
| 179 | + " <td>55</td>\n", |
| 180 | + " <td>11</td>\n", |
| 181 | + " <td>No</td>\n", |
| 182 | + " <td>Yes</td>\n", |
| 183 | + " </tr>\n", |
| 184 | + " <tr>\n", |
| 185 | + " <th>397</th>\n", |
| 186 | + " <td>7.41</td>\n", |
| 187 | + " <td>162</td>\n", |
| 188 | + " <td>26</td>\n", |
| 189 | + " <td>12</td>\n", |
| 190 | + " <td>368</td>\n", |
| 191 | + " <td>159</td>\n", |
| 192 | + " <td>Medium</td>\n", |
| 193 | + " <td>40</td>\n", |
| 194 | + " <td>18</td>\n", |
| 195 | + " <td>Yes</td>\n", |
| 196 | + " <td>Yes</td>\n", |
| 197 | + " </tr>\n", |
| 198 | + " <tr>\n", |
| 199 | + " <th>398</th>\n", |
| 200 | + " <td>5.94</td>\n", |
| 201 | + " <td>100</td>\n", |
| 202 | + " <td>79</td>\n", |
| 203 | + " <td>7</td>\n", |
| 204 | + " <td>284</td>\n", |
| 205 | + " <td>95</td>\n", |
| 206 | + " <td>Bad</td>\n", |
| 207 | + " <td>50</td>\n", |
| 208 | + " <td>12</td>\n", |
| 209 | + " <td>Yes</td>\n", |
| 210 | + " <td>Yes</td>\n", |
| 211 | + " </tr>\n", |
| 212 | + " <tr>\n", |
| 213 | + " <th>399</th>\n", |
| 214 | + " <td>9.71</td>\n", |
| 215 | + " <td>134</td>\n", |
| 216 | + " <td>37</td>\n", |
| 217 | + " <td>0</td>\n", |
| 218 | + " <td>27</td>\n", |
| 219 | + " <td>120</td>\n", |
| 220 | + " <td>Good</td>\n", |
| 221 | + " <td>49</td>\n", |
| 222 | + " <td>16</td>\n", |
| 223 | + " <td>Yes</td>\n", |
| 224 | + " <td>Yes</td>\n", |
| 225 | + " </tr>\n", |
| 226 | + " </tbody>\n", |
| 227 | + "</table>\n", |
| 228 | + "<p>400 rows × 11 columns</p>\n", |
| 229 | + "</div>" |
| 230 | + ], |
| 231 | + "text/plain": [ |
| 232 | + " Sales CompPrice Income Advertising Population Price ShelveLoc Age \\\n", |
| 233 | + "0 9.50 138 73 11 276 120 Bad 42 \n", |
| 234 | + "1 11.22 111 48 16 260 83 Good 65 \n", |
| 235 | + "2 10.06 113 35 10 269 80 Medium 59 \n", |
| 236 | + "3 7.40 117 100 4 466 97 Medium 55 \n", |
| 237 | + "4 4.15 141 64 3 340 128 Bad 38 \n", |
| 238 | + ".. ... ... ... ... ... ... ... ... \n", |
| 239 | + "395 12.57 138 108 17 203 128 Good 33 \n", |
| 240 | + "396 6.14 139 23 3 37 120 Medium 55 \n", |
| 241 | + "397 7.41 162 26 12 368 159 Medium 40 \n", |
| 242 | + "398 5.94 100 79 7 284 95 Bad 50 \n", |
| 243 | + "399 9.71 134 37 0 27 120 Good 49 \n", |
| 244 | + "\n", |
| 245 | + " Education Urban US \n", |
| 246 | + "0 17 Yes Yes \n", |
| 247 | + "1 10 Yes Yes \n", |
| 248 | + "2 12 Yes Yes \n", |
| 249 | + "3 14 Yes Yes \n", |
| 250 | + "4 13 Yes No \n", |
| 251 | + ".. ... ... ... \n", |
| 252 | + "395 14 Yes Yes \n", |
| 253 | + "396 11 No Yes \n", |
| 254 | + "397 18 Yes Yes \n", |
| 255 | + "398 12 Yes Yes \n", |
| 256 | + "399 16 Yes Yes \n", |
| 257 | + "\n", |
| 258 | + "[400 rows x 11 columns]" |
| 259 | + ] |
| 260 | + }, |
| 261 | + "execution_count": 8, |
| 262 | + "metadata": {}, |
| 263 | + "output_type": "execute_result" |
| 264 | + } |
| 265 | + ], |
| 266 | + "source": [ |
| 267 | + "dataset" |
| 268 | + ] |
| 269 | + }, |
| 270 | + { |
| 271 | + "cell_type": "code", |
| 272 | + "execution_count": 9, |
| 273 | + "metadata": {}, |
| 274 | + "outputs": [], |
| 275 | + "source": [ |
| 276 | + "# seprate categorical and numerical value\n", |
| 277 | + "categorical = [col for col in dataset.columns if dataset[col].dtype==object]\n", |
| 278 | + "numerical = [col for col in dataset.columns if dataset[col].dtype!=object]" |
| 279 | + ] |
| 280 | + }, |
| 281 | + { |
| 282 | + "cell_type": "code", |
| 283 | + "execution_count": 10, |
| 284 | + "metadata": {}, |
| 285 | + "outputs": [ |
| 286 | + { |
| 287 | + "name": "stdout", |
| 288 | + "output_type": "stream", |
| 289 | + "text": [ |
| 290 | + " ShelveLoc Urban US\n", |
| 291 | + "0 0 0 0\n", |
| 292 | + "1 1 0 0\n", |
| 293 | + "2 2 0 0\n", |
| 294 | + "3 2 0 0\n", |
| 295 | + "4 0 0 1\n", |
| 296 | + ".. ... ... ..\n", |
| 297 | + "395 1 0 0\n", |
| 298 | + "396 2 1 0\n", |
| 299 | + "397 2 0 0\n", |
| 300 | + "398 0 0 0\n", |
| 301 | + "399 1 0 0\n", |
| 302 | + "\n", |
| 303 | + "[400 rows x 3 columns]\n" |
| 304 | + ] |
| 305 | + } |
| 306 | + ], |
| 307 | + "source": [ |
| 308 | + "# for convert categorical to int\n", |
| 309 | + "for col in categorical:\n", |
| 310 | + " temp = {}\n", |
| 311 | + " count = 0\n", |
| 312 | + " for val in dataset[col].values:\n", |
| 313 | + " try:\n", |
| 314 | + " temp[val]\n", |
| 315 | + " except:\n", |
| 316 | + " temp[val] = count\n", |
| 317 | + " count += 1\n", |
| 318 | + " dataset[col] = [temp[x] for x in dataset[col].values]\n", |
| 319 | + "print(dataset[categorical])" |
| 320 | + ] |
| 321 | + }, |
| 322 | + { |
| 323 | + "cell_type": "code", |
| 324 | + "execution_count": 11, |
| 325 | + "metadata": {}, |
| 326 | + "outputs": [], |
| 327 | + "source": [ |
| 328 | + "# print the dataset \n", |
| 329 | + "\n", |
| 330 | + "X = dataset.iloc[0:199].values \n", |
| 331 | + "y = dataset.iloc[200:399].values" |
| 332 | + ] |
| 333 | + }, |
| 334 | + { |
| 335 | + "cell_type": "code", |
| 336 | + "execution_count": 12, |
| 337 | + "metadata": {}, |
| 338 | + "outputs": [ |
| 339 | + { |
| 340 | + "data": { |
| 341 | + "text/plain": [ |
| 342 | + "DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=None,\n", |
| 343 | + " max_features=None, max_leaf_nodes=None,\n", |
| 344 | + " min_impurity_decrease=0.0, min_impurity_split=None,\n", |
| 345 | + " min_samples_leaf=1, min_samples_split=2,\n", |
| 346 | + " min_weight_fraction_leaf=0.0, presort='deprecated',\n", |
| 347 | + " random_state=0, splitter='best')" |
| 348 | + ] |
| 349 | + }, |
| 350 | + "execution_count": 12, |
| 351 | + "metadata": {}, |
| 352 | + "output_type": "execute_result" |
| 353 | + } |
| 354 | + ], |
| 355 | + "source": [ |
| 356 | + "# create a decisiontreeregressor model \n", |
| 357 | + "regressor = DecisionTreeRegressor(random_state = 0) \n", |
| 358 | + "\n", |
| 359 | + "# fit the regressor with X and Y data \n", |
| 360 | + "regressor.fit(X, y) " |
| 361 | + ] |
| 362 | + } |
| 363 | + ], |
| 364 | + "metadata": { |
| 365 | + "kernelspec": { |
| 366 | + "display_name": "Python 3", |
| 367 | + "language": "python", |
| 368 | + "name": "python3" |
| 369 | + }, |
| 370 | + "language_info": { |
| 371 | + "codemirror_mode": { |
| 372 | + "name": "ipython", |
| 373 | + "version": 3 |
| 374 | + }, |
| 375 | + "file_extension": ".py", |
| 376 | + "mimetype": "text/x-python", |
| 377 | + "name": "python", |
| 378 | + "nbconvert_exporter": "python", |
| 379 | + "pygments_lexer": "ipython3", |
| 380 | + "version": "3.6.8" |
| 381 | + } |
| 382 | + }, |
| 383 | + "nbformat": 4, |
| 384 | + "nbformat_minor": 4 |
| 385 | +} |
0 commit comments