-
Notifications
You must be signed in to change notification settings - Fork 3
Home
머리말 ................................................................................. 5
책 소개 ................................................................................. 8
저자 소개 ................................................................................. 9
우리 주위에서 인공지능 ....................................................... 17
산업혁명과 인공지능 .......................................................... 24
인공지능 ......................................................................... 25
머신러닝 ......................................................................... 27
딥러닝과 뉴런, 뉴럴 네트워크 ............................................... 34
인공지능과 머신러닝, 딥러닝 ................................................ 37
텐서플로 소개 ................................................................... 39
Windows에서 Tensorflow 설치하기 .................................... 43
구글 클라우드 Colaboratory 사용하기 .................................. 48
구글 클라우드 GPU로 실행하기 . ........................................... 50
MNIST의 소개 ................................................................. 54
Linear Regression ......................................................... 61
Cost Function ............................................................... 63
최적화 함수 ..................................................................... 66
오버피팅 ......................................................................... 70
Train Set과 Validation Set, Test Set ................................. 72
Mini batch와 Epoch ....................................................... 74
정규화(Normalization) ...................................................... 76
기본 명령어 ..................................................................... 79
NUMPY ......................................................................... 91
Reshape . ..................................................................... 95
Rank ............................................................................ 96
NaN ........................................................................... 103
MATPLOTLIB ............................................................... 103
tf.Session().................................................106
Sigmoid....................................................107
Linear Regression 실습....................................109
Hypyothesis 정의...........................................111
Cost Function 정의.........................................112
최적화 함수 정의..............................................113
그래프 실행..................................................114
변수와 global_variables_initializer().........................116
Placeholder................................................117
국어성적 예측하기 실습........................................120
MNIST 실습.................................................129
타이타닉 생존자 예측모델......................................134
신경망 소개..................................................151
Activation Function........................................156
역전파 알고리즘..............................................158
Drop Out...................................................160
Fully Connected Network.................................163
Sin 그래프의 예측............................................165
비행기 이륙거리 예측모델......................................174
CNN 소개...................................................191
Stride ......................................................200
Zero Padding과 출력 이미지의 크기 계산......................201
LeNet과 Alex Net...........................................204
VGG net....................................................206
GoogLeNet................................................210
Inception Module을 활용한 이미지 분류기....................215
Tensorflow Hub 소개.......................................220
이미지 분류기 Retraining.....................................221
RNN........................................................233
RNN의 다양한 입력과 출력 관계 ...............................234
BPTT(Backpropagation Through Time)...................235
RNN 모델에서 Vanishing Gradient Problem................237
LSTM(Long Short Term Memory) 네트워크 소개.............237
RNN 실습 내용 소개..........................................243
RNN 코드 설명...............................................244
RNN 실습코드의 전체내용.....................................248
Tensor Board 소개..........................................253
Tensor Board 사용을 위한 코드 추가..........................255
Tensor Board 실행하기......................................259
Tensor Board 그래프의 범례.................................262
연속적인 선 그래프 그리기.....................................263
Name Scope로 묶어 표현하기................................267
변수를 파일로 저장하기........................................272
파일에서 변수 읽어오기........................................277
GAN의 개념과 이슈...........................................287
GAN과 DCGAN(Deep Convolutional GAN)................289
GAN의 수식 리뷰.............................................293
Stack GAN.................................................296
Cycle GAN.................................................301
그 밖의 GAN.................................................304
MNIST 숫자 이미지 생성 실습. ................................307
MNIST 숫자 이미지 생성실습..............................................................307
맺는말 ........................................................................325