- Code for CVPR 2024 "PeerAiD : Improving Adversarial Distillation from a Specialized Peer Tutor".
- This repository includes the training code and scripts to reproduce the results of the paper.
- The video, slides and poster are available.
- OS : Ubuntu
- GPU : NVIDIA A100
- CUDA : 11.7
- python : 3.9
- pytorch : 1.13.1
- Install the required packages by executing the following command.
pip install -r requirements.txt
- These are the commands which reproduce the result of PeerAiD presented in Table 1 of the paper.
python3 main.py --p_type resnet18 --s_type resnet18 --kd --k_train 10 --exp_id 1 --temperature 5 --gamma1 1 --gamma2 0.1 --re_kd_temperature 1 --config_path ./configs/PeerAiD_resnet18_cifar10.json --AA --dataset cifar10 --fgsm_eval --pgd_eval --lamb1 0 --lamb2 1 --lamb3 1 --swa_s
python3 main.py --p_type resnet18 --s_type resnet18 --kd --k_train 10 --exp_id 2 --temperature 5 --gamma1 1 --gamma2 1 --re_kd_temperature 1 --config_path ./configs/PeerAiD_resnet18_cifar100.json --AA --dataset cifar100 --fgsm_eval --pgd_eval --lamb1 0 --lamb2 1 --lamb3 1 --swa_s
python3 main.py --p_type resnet18 --s_type resnet18 --kd --k_train 10 --exp_id 3 --temperature 1 --gamma1 1 --gamma2 100 --re_kd_temperature 1 --config_path ./configs/PeerAiD_resnet18_tinyimagenet.json --AA --dataset tinyimagenet --data_path {your_data_path} --fgsm_eval --pgd_eval --lamb1 0.035 --lamb2 35 --lamb3 20 --swa_s
python3 main.py --p_type wideresnet34x10 --s_type wideresnet34x10 --kd --k_train 10 --exp_id 4 --temperature 5 --gamma1 1 --gamma2 0.1 --re_kd_temperature 1 --config_path ./configs/PeerAiD_wideresnet34x10_cifar10.json --AA --dataset cifar10 --fgsm_eval --pgd_eval --lamb1 0 --lamb2 1 --lamb3 1 --swa_s
python3 main.py --p_type wideresnet34x10 --s_type wideresnet34x10 --kd --k_train 10 --exp_id 5 --temperature 5 --gamma1 1 --gamma2 1 --re_kd_temperature 1 --config_path ./configs/PeerAiD_wideresnet34x10_cifar100.json --AA --dataset cifar100 --fgsm_eval --pgd_eval --lamb1 0 --lamb2 1 --lamb3 1 --swa_s
python3 main.py --p_type wideresnet34x10 --s_type wideresnet34x10 --kd --k_train 10 --exp_id 6 --temperature 1 --gamma1 1 --gamma2 100 --re_kd_temperature 1 --config_path ./configs/PeerAiD_wideresnet34x10_tinyimagenet.json --AA --dataset tinyimagenet --data_path {your_data_path} --fgsm_eval --pgd_eval --lamb1 0.035 --lamb2 35 --lamb3 20 --swa_s
This project is licensed under the terms of the GNU General Public License v3.0
@inproceedings{jung2024peeraid,
title={PeerAiD : Improving Adversarial Distillation from a Specialized Peer Tutor},
author={Jung, Jaewon and Jang, Hongsun and Song, Jaeyong and Lee, Jinho},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2024}
}