Skip to content

icbi-lab/kirchmair_2023

Folders and files

NameName
Last commit message
Last commit date

Latest commit

858243d · Oct 7, 2023

History

7 Commits
Oct 7, 2023
Oct 7, 2023
Oct 7, 2023
Oct 7, 2023
Aug 4, 2023
Aug 4, 2023
Oct 7, 2023

Repository files navigation

Kirchmair et al., Frontiers in Immunology 2023

Data analyses for 13C tracer analysis reveals the landscape of metabolic checkpoints in human CD8+ T cell differentiation and exhaustion (Kirchmair et al., Frontiers in Immunology 2023)

Environment setup

# source lib/make_env.sh # initial code to make conda envs
conda env create -n cd8 -f env/cd8.yml # recreate conda env
conda env create -n cd8_ngscm -f env/cd8_ngscm.yml # recreate conda env

conda activate cd8
Rscript -e 'devtools::install_github("AlexanderKirchmair/datamisc")'
Rscript -e 'devtools::install_github("AlexanderKirchmair/c13ms")'
Rscript -e 'install.packages("qualpalr", repos = "https://cran.wu.ac.at/")'
Rscript -e 'devtools::install_github("AlexanderKirchmair/DeLuciatoR")' # version forked from https://github.com/infotroph/DeLuciatoR

mkdir logs

Set up NGSCheckMate-1.0.0

cd lib
git clone https://github.com/parklab/NGSCheckMate.git
echo 'SAMTOOLS=samtools' > lib/NGSCheckMate/ncm.conf
echo 'BCFTOOLS=bcftools' >> lib/NGSCheckMate/ncm.conf
echo 'REF=/data/genomes/hg38/fasta/gencode/GRCh38.primary_assembly.genome.fa' >> lib/NGSCheckMate/ncm.conf
cd ..

RNA sequencing data

Raw data download

conda activate cd8

Memory differentiation samples (GSE234099):

mkdir -p data/rnaseq/MEM/00_RAW
accs=$(awk 'NR>1 {print $2 "-" $1}' "tables/GSE234099.txt")
for acc in $accs
do
  qsub lib/run_download.sh ${acc%-*} ${acc#*-} data/rnaseq/MEM/00_RAW ~/myScratch/tmp
  while [ $(qstat -s pr | grep -w -c "DOWNLOAD") -gt 3 ]; do sleep 3; done
done

Exhaustion samples (GSE234100):

mkdir -p data/rnaseq/EXH/00_RAW
accs=$(awk 'NR>1 {print $2 "-" $1}' "tables/GSE234100.txt")
for acc in $accs
do
  qsub lib/run_download.sh ${acc%-*} ${acc#*-} data/rnaseq/EXH/00_RAW ~/myScratch/tmp
  while [ $(qstat -s pr | grep -w -c "DOWNLOAD") -gt 3 ]; do sleep 3; done
done

Preprocessing

Trimming:

mkdir data/rnaseq/MEM/01_TRIMMED
for file in data/rnaseq/MEM/00_RAW/*fastq.gz
do
  qsub lib/run_trimming.sh $file data/rnaseq/MEM/01_TRIMMED
done

mkdir data/rnaseq/EXH/01_TRIMMED
for file in data/rnaseq/EXH/00_RAW/*fastq.gz
do
  qsub lib/run_trimming.sh $file data/rnaseq/EXH/01_TRIMMED
done

Read alignment and quantification using the nf-core/rnaseq-3.4 pipeline (set genome paths in lib/run_rnaseq.sh):

bash -i lib/run_rnaseq.sh 'tables/samplesheet_mem.csv' 'data/rnaseq/MEM/02_NF_results'
mv .nextflow.log logs/mem.nextflow.log

bash -i lib/run_rnaseq.sh 'tables/samplesheet_exh.csv' 'data/rnaseq/EXH/02_NF_results'
mv .nextflow.log logs/exh.nextflow.log

Check if the paired samples are matching with NGSCheckMate-1.0.0:

conda activate cd8_ngscm

mkdir data/rnaseq/MEM/samplecheck
ls -d data/rnaseq/MEM/02_NF_results/star_salmon/*bam > data/rnaseq/MEM/samplecheck/files.txt
qsub lib/run_NGSCheckMate.sh 'data/rnaseq/MEM/samplecheck/files.txt' 'data/rnaseq/MEM/samplecheck'
mv r_script.r.Rout data/rnaseq/MEM/samplecheck/

mkdir data/rnaseq/EXH/samplecheck
ls -d data/rnaseq/EXH/02_NF_results/star_salmon/*bam > data/rnaseq/EXH/samplecheck/files.txt
qsub lib/run_NGSCheckMate.sh 'data/rnaseq/EXH/samplecheck/files.txt' 'data/rnaseq/EXH/samplecheck'
mv r_script.r.Rout data/rnaseq/EXH/samplecheck/

Rscript lib/plot_NGSCheckMate.R

Gene sets were prepared by running Rscript lib/prepare_genesets.R.

Metabolomics data

13C metabolomics data: data/metabolomics

Seahorse data

Seahorse data: data/seahorse

Analysis

The main analyses can be reproduced by rendering the the .Rmd files:

conda activate cd8
Rscript -e "rmarkdown::render('analyses/01-RNA-Differentiation.Rmd')"
Rscript -e "rmarkdown::render('analyses/02-13C-Differentiation.Rmd')"
Rscript -e "rmarkdown::render('analyses/03-RNA-Exhaustion.Rmd')"
Rscript -e "rmarkdown::render('analyses/04-13C-Exhaustion.Rmd')"
Rscript -e "rmarkdown::render('analyses/05-RNA-Exhaustion-Public.Rmd')"
Rscript -e "rmarkdown::render('analyses/06-RNA-Mitochondria.Rmd')"
Rscript -e "rmarkdown::render('analyses/07-Public-Dataset-Comparison.Rmd')"

Results

To reproduce the final figures and tables, run:

conda activate cd8
Rscript -e "rmarkdown::render('analyses/08-Results.Rmd')"

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published