-
Notifications
You must be signed in to change notification settings - Fork 140
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
lighteval support after checkpoint, UX refactor #222
base: main
Are you sure you want to change the base?
Changes from 33 commits
5eb2549
3875c60
e609d1c
a5c0cc2
6b58c25
34b50a6
7a105be
28770a5
7652089
4e2d7d9
e7f0437
bb45352
e9d4a2e
79ae2cb
cfcbd70
0d43a95
207797e
8ce8b18
6dd81b2
4750736
90860f5
28b3847
157c2ae
6daa717
17bfd5f
43728d5
b646980
714644d
930add6
fd21322
03e0e82
4acf9bc
ab1e3c9
7649815
065d9b1
a7804f5
efce15b
73da086
67115a5
6249264
11d60c8
5e8361c
43c833f
3d7c98f
e74ffd1
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,281 @@ | ||
import os | ||
from pathlib import Path | ||
import subprocess | ||
from datetime import datetime | ||
import math | ||
import torch | ||
|
||
import argparse | ||
|
||
from nanotron.models.llama import LlamaConfig | ||
|
||
from nanotron.config import ( | ||
Config, | ||
DataArgs, | ||
NanosetDatasetsArgs, | ||
S3UploadArgs, | ||
CheckpointsArgs, | ||
GeneralArgs, | ||
LightEvalConfig, | ||
LightEvalLoggingArgs, | ||
LightEvalTasksArgs, | ||
LoggingArgs, | ||
LRSchedulerArgs, | ||
ModelArgs, | ||
OptimizerArgs, | ||
AdamWOptimizerArgs, | ||
ParallelismArgs, | ||
RandomInit, | ||
TokenizerArgs, | ||
TokensArgs, | ||
DatasetStageArgs, | ||
) | ||
|
||
if __name__ == "__main__": | ||
########################################### | ||
## ADAPT TO YOUR ENVIRONMENT (toy example of smollm-135M on 1 GPU) | ||
|
||
HF_USER_OR_ORG = "eliebak" | ||
TRAIN_STEPS = 100 | ||
CHECKPOINT_INTERVAL = 200 | ||
SAVE_NAME="smollm-135M-1gpu-toy" | ||
|
||
|
||
########################################### | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--save-path", help="path to save the configuration file", type=str, default="yaml") | ||
parser.add_argument("--seed", help="seed", type=int, default=8) | ||
parser.add_argument("--launch", action="store_true", help="Launch the configuration immediately") | ||
parser.add_argument("--logs-path", help="path to the logs folder", type=str) | ||
parser.add_argument("--run", help="name of the run", type=str) | ||
parser.add_argument("--slurm", help="use slurm", action="store_true") | ||
parser.add_argument("--nodes", help="specify the number of nodes", type=int) | ||
args = parser.parse_args() | ||
|
||
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") | ||
general = GeneralArgs( | ||
project="smollm", | ||
run="toy-smollm", | ||
seed=args.seed, | ||
temp_dir="temp", | ||
) | ||
|
||
model_config = LlamaConfig( | ||
bos_token_id=0, | ||
eos_token_id=0, | ||
hidden_act="silu", | ||
hidden_size=576, | ||
initializer_range=0.02, | ||
intermediate_size=1536, | ||
max_position_embeddings=2048, | ||
num_attention_heads=9, | ||
num_hidden_layers=30, | ||
num_key_value_heads=3, | ||
pretraining_tp=1, | ||
rms_norm_eps=1e-05, | ||
rope_scaling=None, | ||
tie_word_embeddings=True, | ||
use_cache=True, | ||
vocab_size=49152, | ||
) | ||
|
||
|
||
# lighteval = LightEvalConfig( | ||
# tasks=LightEvalTasksArgs( | ||
# tasks="early-signal", # "generatives", "all" | ||
# custom_tasks="nanotron.lighteval.evaluation_tasks", | ||
# max_samples=1000, | ||
# dataset_loading_processes=8, | ||
# ), | ||
# parallelism=ParallelismArgs( | ||
# dp=8, | ||
# pp=1, | ||
# tp=1, | ||
# pp_engine="1f1b", | ||
# tp_mode="ALL_REDUCE", | ||
# # recompute_granularity="selective", | ||
# tp_linear_async_communication=False, | ||
# ), | ||
# batch_size=16, | ||
# logging=LightEvalLoggingArgs( | ||
# local_output_path="lighteval-logs", | ||
# private=True, | ||
# push_details_to_hub=True, | ||
# push_results_to_hub=True, | ||
# push_results_to_tensorboard=True, | ||
# hf_user_or_org=HF_USER_OR_ORG, | ||
# hub_repo_results="lighteval-results", | ||
# hub_repo_details="lighteval-details", | ||
# hub_repo_tensorboard="smollm-evals-visualization", | ||
# tensorboard_metric_prefix="eval", | ||
# ), | ||
# slurm_template="slurm/run_eval.slurm.jinja", | ||
# # slurm_template="slurm/run_eval_s3.slurm.jinja", if s3 | ||
|
||
# ) | ||
|
||
lighteval = None | ||
|
||
checkpoints = CheckpointsArgs( | ||
checkpoints_path="checkpoints", | ||
checkpoints_path_is_shared_file_system=False, | ||
# resume_checkpoint_path="", | ||
checkpoint_interval=CHECKPOINT_INTERVAL, | ||
save_initial_state=False, | ||
) | ||
|
||
parallelism = ParallelismArgs( | ||
dp=1, | ||
pp=1, | ||
tp=1, | ||
pp_engine="1f1b", | ||
tp_mode="REDUCE_SCATTER", | ||
tp_linear_async_communication=True, | ||
) | ||
|
||
tokens = TokensArgs( | ||
batch_accumulation_per_replica=8, | ||
micro_batch_size=8, | ||
sequence_length=2048, | ||
train_steps=TRAIN_STEPS, | ||
val_check_interval=-1, | ||
) | ||
|
||
model = ModelArgs( | ||
model_config=model_config, | ||
init_method=RandomInit( | ||
std=1/math.sqrt(model_config.hidden_size), | ||
), | ||
dtype=torch.bfloat16, | ||
) | ||
|
||
logging = LoggingArgs( | ||
# 'debug', 'info', 'warning', 'error', 'critical' and 'passive' | ||
log_level="info", | ||
log_level_replica="info", | ||
iteration_step_info_interval=1, | ||
) | ||
|
||
learning_rate_scheduler = LRSchedulerArgs( | ||
learning_rate=3e-3, | ||
lr_warmup_steps=10, | ||
lr_warmup_style="linear", | ||
lr_decay_style="1-sqrt", | ||
lr_decay_steps = 20, | ||
lr_decay_starting_step=80 , | ||
min_decay_lr=0, | ||
) | ||
|
||
|
||
optimizer = OptimizerArgs( | ||
zero_stage=0, | ||
weight_decay=0.01, | ||
clip_grad=1.0, | ||
accumulate_grad_in_fp32=True, | ||
learning_rate_scheduler=learning_rate_scheduler, | ||
optimizer_factory=AdamWOptimizerArgs( | ||
adam_eps=1e-08, | ||
adam_beta1=0.9, | ||
adam_beta2=0.95, | ||
torch_adam_is_fused=True, | ||
), | ||
) | ||
|
||
tokenizer = TokenizerArgs( | ||
tokenizer_name_or_path="HuggingFaceTB/cosmo2-tokenizer", | ||
) | ||
|
||
# Uncomment if you want to upload the checkpoints to s3 or load a ckpt from s3 | ||
# s3_upload = S3UploadArgs( | ||
# upload_s3_path=f"S3_PATH", | ||
# remove_after_upload=True, | ||
# s5cmd_numworkers=16, | ||
# s5cmd_concurrency=5, | ||
# s5cmd_path="PATH_TO_S5CMD", | ||
# ) | ||
|
||
data_stages=[ | ||
DatasetStageArgs( | ||
data=DataArgs( | ||
dataset=NanosetDatasetsArgs( | ||
dataset_folder="datasets/cosmopedia-v2", | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Is it possible to use HF Very good idea to add into comments the other possibilities of loading dataset ! (If possible, add the There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. agree default should be HF datasets! |
||
), | ||
num_loading_workers=0, | ||
seed=general.seed, | ||
), | ||
name="training stage", | ||
start_training_step=1, | ||
), | ||
# You can add a decay stage here if you want to change the data mixture | ||
# Example (weight are arbitrary here): | ||
# DatasetStageArgs( | ||
# data=DataArgs( | ||
# dataset=NanosetDatasetsArgs( | ||
# dataset_folder={ | ||
# "datasets/fineweb-edu-dedup": 50, | ||
# "datasets/cosmopedia-v2": 30, | ||
# "datasets/python-edu": 10, | ||
# "datasets/open-web-math": 10, | ||
# } | ||
# ), | ||
# num_loading_workers=0, | ||
# seed=general.seed, | ||
# ), | ||
# name="decay stage", | ||
# start_training_step=optimizer.learning_rate_scheduler.lr_decay_starting_step, | ||
# ), | ||
] | ||
|
||
config = Config( | ||
general=general, | ||
checkpoints=checkpoints, | ||
parallelism=parallelism, | ||
model=model, | ||
tokenizer=tokenizer, | ||
logging=logging, | ||
tokens=tokens, | ||
optimizer=optimizer, | ||
data_stages=data_stages, | ||
lighteval=lighteval, | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. not defined variable? |
||
) | ||
|
||
save_path= Path(args.save_path) | ||
save_path.mkdir(parents=True, exist_ok=True) | ||
|
||
config_path_yaml = save_path / f"{SAVE_NAME}.yaml" | ||
config.save_as_yaml(config_path_yaml) | ||
|
||
print(f"💾 Configuration saved in: {str(save_path)}") | ||
|
||
if args.launch: | ||
|
||
# Sanity check for logs_path and run | ||
if not args.logs_path: | ||
raise ValueError("--logs_path must be defined. Please provide a path for the logs.") | ||
if not args.run: | ||
raise ValueError("--run must be defined. Please provide a name for the run.") | ||
|
||
launcher_path = Path("launcher.py") | ||
if not launcher_path.exists(): | ||
raise FileNotFoundError(f"Launcher not found at {launcher_path}. Please ensure the file exists or change the launcher path in the create_config.py file.") | ||
launch_command = [ | ||
"python", str(launcher_path), | ||
"--config-path", str(config_path_yaml), | ||
] | ||
launch_command.extend([ | ||
"--logs-path", args.logs_path, | ||
"--run", args.run | ||
]) | ||
if args.slurm: | ||
launch_command.append("--slurm") | ||
|
||
if args.nodes: | ||
launch_command.extend(["--nodes", str(args.nodes)]) | ||
|
||
|
||
print(f"🧪 Launching configuration with command: {' '.join(launch_command)}") | ||
subprocess.run(launch_command, check=True) | ||
else: | ||
print("To launch this configuration, run:") | ||
print(f"python 'launcher.py' configs/{str(config_path_yaml)}") |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Is it possible put checkpoints in the same folder as
--logs-path
when specified forlauncher.py
(maybe set it to None by default and overwrite checkpoints_path inlauncher.py
? ). Could be good to have eveything centralized in same folder ?There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Done (and same goes for the lighteval-logs as well) the log structure now look like this