Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
hpc203 authored Dec 4, 2021
1 parent 86c0a68 commit f865b7c
Show file tree
Hide file tree
Showing 2 changed files with 111 additions and 0 deletions.
71 changes: 71 additions & 0 deletions convert_onnx/detector.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
import torch
import torch.nn as nn

from model.fpn import *
from model.backbone.shufflenetv2 import *

class Detector(nn.Module):
def __init__(self, classes, anchor_num, load_param):
super(Detector, self).__init__()
out_depth = 72
stage_out_channels = [-1, 24, 48, 96, 192]

self.backbone = ShuffleNetV2(stage_out_channels, load_param)
self.fpn = LightFPN(stage_out_channels[-2] + stage_out_channels[-1], stage_out_channels[-1], out_depth)

self.output_reg_layers = nn.Conv2d(out_depth, 4 * anchor_num, 1, 1, 0, bias=True)
self.output_obj_layers = nn.Conv2d(out_depth, anchor_num, 1, 1, 0, bias=True)
self.output_cls_layers = nn.Conv2d(out_depth, classes, 1, 1, 0, bias=True)

def forward(self, x):
C2, C3 = self.backbone(x)
cls_2, obj_2, reg_2, cls_3, obj_3, reg_3 = self.fpn(C2, C3)

out_reg_2 = self.output_reg_layers(reg_2)
out_obj_2 = self.output_obj_layers(obj_2)
out_cls_2 = self.output_cls_layers(cls_2)

out_reg_3 = self.output_reg_layers(reg_3)
out_obj_3 = self.output_obj_layers(obj_3)
out_cls_3 = self.output_cls_layers(cls_3)
if not torch.onnx.is_in_onnx_export():
return out_reg_2, out_obj_2, out_cls_2, out_reg_3, out_obj_3, out_cls_3
else:
# for out in (out_reg_2, out_obj_2, out_cls_2, out_reg_3, out_obj_3, out_cls_3):
# print(out.shape)

c = out_reg_2.shape[1]
out_reg_2 = out_reg_2.permute(0, 2, 3, 1).view(-1, c)
c = out_obj_2.shape[1]
out_obj_2 = out_obj_2.permute(0, 2, 3, 1).view(-1, c)
c = out_cls_2.shape[1]
out_cls_2 = out_cls_2.permute(0, 2, 3, 1).view(-1, c)
out_reg_2 = torch.sigmoid(out_reg_2)
out_obj_2 = torch.sigmoid(out_obj_2)
out_cls_2 = F.softmax(out_cls_2, dim=1)
out2 = torch.cat((out_reg_2, out_obj_2, out_cls_2), dim=1)

c = out_reg_3.shape[1]
out_reg_3 = out_reg_3.permute(0, 2, 3, 1).view(-1, c)
c = out_obj_3.shape[1]
out_obj_3 = out_obj_3.permute(0, 2, 3, 1).view(-1, c)
c = out_cls_3.shape[1]
out_cls_3 = out_cls_3.permute(0, 2, 3, 1).view(-1, c)
out_reg_3 = torch.sigmoid(out_reg_3)
out_obj_3 = torch.sigmoid(out_obj_3)
out_cls_3 = F.softmax(out_cls_3, dim=1)
out3 = torch.cat((out_reg_3, out_obj_3, out_cls_3), dim=1)
return torch.cat((out2, out3), dim=0)

if __name__ == "__main__":
model = Detector(80, 3, False)
test_data = torch.rand(1, 3, 352, 352)
torch.onnx.export(model, #model being run
test_data, # model input (or a tuple for multiple inputs)
"test.onnx", # where to save the model (can be a file or file-like object)
export_params=True, # store the trained parameter weights inside the model file
opset_version=11, # the ONNX version to export the model to
do_constant_folding=True) # whether to execute constant folding for optimization



40 changes: 40 additions & 0 deletions convert_onnx/pytorch2onnx.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
import argparse
import torch
import model.detector
import utils.utils

if __name__ == '__main__':
#指定训练配置文件
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default='',
help='Specify training profile *.data')
parser.add_argument('--weights', type=str, default='',
help='The path of the .pth model to be transformed')

parser.add_argument('--output', type=str, default='./model.onnx',
help='The path where the onnx model is saved')

opt = parser.parse_args()
cfg = utils.utils.load_datafile(opt.data)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.detector.Detector(cfg["classes"], cfg["anchor_num"], True)
model.load_state_dict(torch.load(opt.weights, map_location=device))
#sets the module in eval node
model.eval()

test_data = torch.rand(1, 3, cfg["height"], cfg["width"])
torch.onnx.export(model, #model being run
test_data, # model input (or a tuple for multiple inputs)
opt.output, # where to save the model (can be a file or file-like object)
export_params=True, # store the trained parameter weights inside the model file
opset_version=11, # the ONNX version to export the model to
do_constant_folding=True) # whether to execute constant folding for optimization
# torch.onnx.export(model, # model being run
# test_data, # model input (or a tuple for multiple inputs)
# opt.output, # where to save the model (can be a file or file-like object)
# opset_version=11, # the ONNX version to export the model to
# input_names = ['images'], output_names = ['out'])



0 comments on commit f865b7c

Please sign in to comment.