Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 8 additions & 1 deletion howso/client/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -3694,6 +3694,7 @@ def react_aggregate( # noqa: C901
value_robust_contributions_features: t.Optional[Collection[str]] = None,
value_robust_contributions_num_buckets: int = 30,
value_robust_contributions_min_samples: int = 15,
value_robust_contributions_min_cases: int = 15,
weight_feature: t.Optional[str] = None,
) -> dict[str, dict[str, t.Any]]:
"""
Expand Down Expand Up @@ -4018,10 +4019,15 @@ def react_aggregate( # noqa: C901
The maximum number of buckets to bin continuous values into when computing the
"value_robust_accuracy_contributions", "value_robust_prediction_contributions" or
"value_robust_surprisal_asymmetry" details.
value_robust_contributions_num_samples: int, default 15
value_robust_contributions_min_samples: int, default 15
The minumum number of samples required for a combination of feature values for its
aggregated measure to be returned when computing the "value_robust_accuracy_contributions",
"value_robust_prediction_contributions" or "value_robust_surprisal_asymmetry" details.
value_robust_contributions_min_cases: int, default 15
The minimum number of unique cases for a given nominal class or continuous bucket to be
used as a possible feature value when collecting all combinations of feature values in
the data to report metrics over. If unspecified, there is no filtering based on number
of unique cases.
weight_feature : str, optional
The name of feature whose values to use as case weights.
When left unspecified uses the internally managed case weight.
Expand Down Expand Up @@ -4100,6 +4106,7 @@ def react_aggregate( # noqa: C901
"value_robust_contributions_features": value_robust_contributions_features,
"value_robust_contributions_num_buckets": value_robust_contributions_num_buckets,
"value_robust_contributions_min_samples": value_robust_contributions_min_samples,
"value_robust_contributions_min_cases": value_robust_contributions_min_cases,
"weight_feature": weight_feature,
})
if stats is None:
Expand Down
9 changes: 8 additions & 1 deletion howso/engine/trainee.py
Original file line number Diff line number Diff line change
Expand Up @@ -3592,6 +3592,7 @@ def react_aggregate(
value_robust_contributions_features: t.Optional[Collection[str]] = None,
value_robust_contributions_num_buckets: int = 30,
value_robust_contributions_min_samples: int = 15,
value_robust_contributions_min_cases: int = 15,
weight_feature: t.Optional[str] = None,
) -> AggregateReaction:
"""
Expand Down Expand Up @@ -3920,10 +3921,15 @@ def react_aggregate(
The maximum number of buckets to bin continuous values into when computing the
"value_robust_accuracy_contributions", "value_robust_prediction_contributions" or
"value_robust_surprisal_asymmetry" details.
value_robust_contributions_num_samples: int, default 15
value_robust_contributions_min_samples: int, default 15
The minumum number of samples required for a combination of feature values for its
aggregated measure to be returned when computing the "value_robust_accuracy_contributions",
"value_robust_prediction_contributions" or "value_robust_surprisal_asymmetry" details.
value_robust_contributions_min_cases: int, default 15
The minimum number of unique cases for a given nominal class or continuous bucket to be
used as a possible feature value when collecting all combinations of feature values in
the data to report metrics over. If unspecified, there is no filtering based on number
of unique cases.
weight_feature : str, optional
The name of feature whose values to use as case weights.
When left unspecified uses the internally managed case weight.
Expand Down Expand Up @@ -3967,6 +3973,7 @@ def react_aggregate(
value_robust_contributions_buckets=value_robust_contributions_buckets,
value_robust_contributions_num_buckets=value_robust_contributions_num_buckets,
value_robust_contributions_min_samples=value_robust_contributions_min_samples,
value_robust_contributions_min_cases=value_robust_contributions_min_cases,
weight_feature=weight_feature,
)
else:
Expand Down
2 changes: 1 addition & 1 deletion version.json
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
{
"dependencies": {
"howso-engine": "110.0.1"
"howso-engine": "110.1.0"
}
}
Loading