-
-
Notifications
You must be signed in to change notification settings - Fork 365
OpenSky download script
Jean-Luc Stevens edited this page May 22, 2019
·
1 revision
This page describes how the data was obtained for the OpenSky noteboook
This data was obtained by running a cron job with the following script running at one-minute intervals over a four-day period:
import json, sqlite3, requests, pandas as pd
DB='../data/opensky.db'
conn = sqlite3.connect(DB)
api_url = 'https://opensky-network.org/api/states/all'
cols = ['icao24', 'callsign', 'origin', 'time_position', 'time_velocity',
'longitude', 'latitude', 'altitude', 'on_ground', 'velocity',
'heading', 'vertical_rate', 'sensors']
req = requests.get(api_url)
content = json.loads(req.content)
states = content['states']
df = pd.DataFrame(states, columns=cols)
df['timestamp'] = content['time']
df.to_sql('opensky', conn, index=False, if_exists='append')
The resulting opensky.db
file was then transformed into Web Mercator coordinates, split per flight, and exported to Parquet format, using the code below. This process took about 7 minutes on a MacBook Pro laptop.
import sqlite3, pandas as pd, numpy as np, holoviews as hv, datashader.utils as du
def transform_coords(df):
df=df.copy()
df.loc[:, 'longitude'], df.loc[:, 'latitude'] = \
du.lnglat_to_meters(df.longitude,df.latitude)
return df
def split_flights(df):
df = df.copy().reset_index(drop=True)
df = df[np.logical_not(df.time_position.isnull())]
empty=df[:1].copy()
empty.loc[0, :] = 0
empty.loc[0, 'origin'] = ''
empty.loc[0, 'latitude'] = np.NaN
empty.loc[0, 'longitude'] = np.NaN
paths = []
for gid, group in df.groupby('icao24'):
times = group.time_position
splits = np.split(group.reset_index(drop=True), np.where(times.diff()>600)[0])
for split_df in splits:
if len(split_df) > 20:
paths += [split_df, empty]
split = pd.concat(paths,ignore_index=True)
split['ascending'] = split.vertical_rate>0
return split
# Load the data from a SQLite database and project into Web Mercator (1.5 min)
DB='../data/opensky.db'
conn = sqlite3.connect(DB)
df = transform_coords(pd.read_sql("SELECT * from flights", conn))
# Split into groups by flight (6 min)
flightpaths = split_flights(df)
# Remove unused columns and declare categoricals
flightpaths = flightpaths[['longitude', 'latitude', 'origin', 'ascending', 'velocity']]
flightpaths['origin'] = flightpaths.origin.astype('category')
flightpaths['ascending'] = flightpaths.ascending.astype('bool')
# Export to Parquet
args = dict(engine="fastparquet", compression="snappy", has_nulls=False, write_index=False)
flightpaths.to_parquet("../data/opensky.parq", **args)