-
Notifications
You must be signed in to change notification settings - Fork 12
API Reference
Description: Main application entry point. Renders the music player interface with an empty playlist.
Request: None
Response: HTML page (musi.html template)
Template Variables:
-
songs: Empty list[]
Example:
curl http://localhost:5000/Description: Receives webcam snapshot, performs emotion detection, and generates a personalized playlist.
Request:
- Method: POST
- Content-Type: application/x-www-form-urlencoded
-
Body Parameters:
-
imageBase64(string): Base64-encoded PNG image from webcam
-
Response: HTML page (musi.html template) with generated playlist
Template Variables:
-
songs: List of song strings in format"XXX.mp3_Song Name - Artist"
Process:
- Decode base64 image data
- Save image to
snapshots/pic.png - Call
get_playlist()to generate songs - Render template with playlist
Example:
$.ajax({
type: "POST",
url: "/hook",
data: {
imageBase64: "..."
},
success: function(response) {
document.write(response);
}
});Description: Generates emotion history visualization and returns the music player with current playlist.
Request: None
Response: HTML page (musi.html template) with playlist
Side Effects:
- Creates emotion grid visualization
- Saves graph to
static/graph.jpg
Template Variables:
-
songs: List of songs from current session
Example:
curl http://localhost:5000/graphDescription: Analyzes the saved snapshot image to detect facial emotions using Algorithmia's deep learning API.
Parameters: None (reads from snapshots/pic.png)
Returns:
-
str: Detected emotion name ("Happy", "Sad", "Angry", "Fear", "Surprise", "Disgust", or "Neutral")
Side Effects:
- Appends emotion color code to global
emot_list - Prints emotion list to console
Algorithm:
- Read image from
snapshots/pic.png - Send to Algorithmia EmotionRecognitionCNNMBP API
- Parse confidence scores for each emotion
- Return emotion with highest confidence
- Default to "Neutral" if no face detected
API Call:
client = Algorithmia.client('api-key')
algo = client.algo('deeplearning/EmotionRecognitionCNNMBP/1.0.1')
result = algo.pipe(input).resultEmotion Color Mapping:
{
'Neutral': 11,
'Sad': 31,
'Disgust': 51,
'Fear': 61,
'Surprise': 41,
'Happy': 21,
'Angry': 1
}Example:
from algorithmia import get_emotion
emotion = get_emotion()
print(f"Detected emotion: {emotion}")
# Output: "Detected emotion: Happy"Description: Generates a personalized music playlist based on detected emotion using cluster-based selection.
Parameters: None
Returns:
-
list: Playlist of song strings in format"XXX.mp3_Song Name - Artist"
Dependencies:
- Calls
get_emotion()internally - Reads song database from
test.txt
Cluster Mapping:
songlist = {
1: [1, 170], # Energetic/Upbeat
2: [171, 334], # Moderate Energy
3: [335, 549], # Neutral/Mixed
4: [550, 740], # Calm/Mellow
5: [741, 903] # Intense/Dark
}Emotion-to-Cluster Logic:
| Emotion | Cluster Distribution | Total Songs |
|---|---|---|
| Anger, Fear | 5×2, 3×7, 2×12 | 21 songs |
| Sad | 3×4, 4×4, 2×13 | 42 songs |
| Neutral, Disgust, Surprise | 3×2, 4×5, 2×7, 1×5 | 19 songs |
| Happy | 2×10, 4×5, 1×6 | 21 songs |
Algorithm:
- Detect current emotion
- Select cluster distribution based on emotion
- For each cluster in distribution:
- Randomly select N songs from that cluster's range
- Return complete playlist
Example:
from algorithmia import get_playlist
playlist = get_playlist()
print(f"Generated {len(playlist)} songs")
print(f"First song: {playlist[0]}")
# Output: "Generated 21 songs"
# Output: "First song: 741.mp3_Song Name - Artist"Description: Creates a visual grid representation of emotion history throughout the listening session.
Parameters: None (uses global emot_list)
Returns: None
Side Effects:
- Generates matplotlib figure
- Saves image to
static/graph.jpg - Displays plot window (plt.show())
Grid Specifications:
- Size: 5 rows × 10 columns (50 cells)
- Fill Order: Left-to-right, top-to-bottom
- Default Color: White (81) for unused cells
Color Scheme:
- Red: Angry
- Blue: Neutral
- Yellow: Happy
- Green: Sad
- Cyan: Surprise
- Magenta: Disgust
- Black: Fear
- White: No data
Example:
from algorithmia import get_emotion_grid
# After several emotion detections
get_emotion_grid()
# Creates static/graph.jpg with emotion timelineFormat: Pickled Python list
Structure:
[
"Song Name - Artist",
"Song Name - Artist",
...
]Total Entries: 903 songs (indices 0-902)
Loading:
import pickle
with open("test.txt", "rb") as fp:
songnames = pickle.load(fp, encoding='latin1')Structure: List of strings
String Format: "{index:03d}.mp3_{song_name}"
Example:
[
"001.mp3_(Mama) He Treats Your Daughter Mean - Brown",
"234.mp3_Night in Tunisia - Blakey",
"567.mp3_Along Came Jones - Coasters"
]Parsing:
var parts = songlist[i].split("_");
var filename = parts[0]; // "001.mp3"
var displayName = parts[1]; // "Song Name - Artist"Endpoint: deeplearning/EmotionRecognitionCNNMBP/1.0.1
Authentication: API Key (required)
Input: Binary image data (PNG/JPEG)
Output:
{
"results": [
{
"emotions": [
{"label": "Happy", "confidence": 0.85},
{"label": "Sad", "confidence": 0.05},
{"label": "Angry", "confidence": 0.02},
{"label": "Neutral", "confidence": 0.03},
{"label": "Fear", "confidence": 0.01},
{"label": "Disgust", "confidence": 0.02},
{"label": "Surprise", "confidence": 0.02}
]
}
]
}Error Cases:
- Empty
resultsarray: No face detected - API timeout: Network error
- Invalid API key: Authentication failure
Currently hardcoded, but should be moved to environment variables:
# Algorithmia API Key
ALGORITHMIA_API_KEY = "your-api-key-here"
# Flask Secret Key
FLASK_SECRET_KEY = "your-secret-key-here"
# Server Configuration
FLASK_DEBUG = True
FLASK_HOST = "0.0.0.0"
FLASK_PORT = 5000# Snapshot storage
SNAPSHOT_PATH = "snapshots/pic.png"
# Song database
SONG_DATABASE = "test.txt"
# Music files
MUSIC_DIRECTORY = "static/music/"
# Emotion graph output
GRAPH_OUTPUT = "static/graph.jpg"