Skip to content

API Reference

github-actions edited this page Oct 22, 2025 · 1 revision

API Reference

Flask Routes

GET /

Description: Main application entry point. Renders the music player interface with an empty playlist.

Request: None

Response: HTML page (musi.html template)

Template Variables:

  • songs: Empty list []

Example:

curl http://localhost:5000/

POST /hook

Description: Receives webcam snapshot, performs emotion detection, and generates a personalized playlist.

Request:

  • Method: POST
  • Content-Type: application/x-www-form-urlencoded
  • Body Parameters:
    • imageBase64 (string): Base64-encoded PNG image from webcam

Response: HTML page (musi.html template) with generated playlist

Template Variables:

  • songs: List of song strings in format "XXX.mp3_Song Name - Artist"

Process:

  1. Decode base64 image data
  2. Save image to snapshots/pic.png
  3. Call get_playlist() to generate songs
  4. Render template with playlist

Example:

$.ajax({
    type: "POST",
    url: "/hook",
    data: {
        imageBase64: "..."
    },
    success: function(response) {
        document.write(response);
    }
});

GET /graph

Description: Generates emotion history visualization and returns the music player with current playlist.

Request: None

Response: HTML page (musi.html template) with playlist

Side Effects:

  • Creates emotion grid visualization
  • Saves graph to static/graph.jpg

Template Variables:

  • songs: List of songs from current session

Example:

curl http://localhost:5000/graph

Python Functions

algorithmia.py

get_emotion()

Description: Analyzes the saved snapshot image to detect facial emotions using Algorithmia's deep learning API.

Parameters: None (reads from snapshots/pic.png)

Returns:

  • str: Detected emotion name ("Happy", "Sad", "Angry", "Fear", "Surprise", "Disgust", or "Neutral")

Side Effects:

  • Appends emotion color code to global emot_list
  • Prints emotion list to console

Algorithm:

  1. Read image from snapshots/pic.png
  2. Send to Algorithmia EmotionRecognitionCNNMBP API
  3. Parse confidence scores for each emotion
  4. Return emotion with highest confidence
  5. Default to "Neutral" if no face detected

API Call:

client = Algorithmia.client('api-key')
algo = client.algo('deeplearning/EmotionRecognitionCNNMBP/1.0.1')
result = algo.pipe(input).result

Emotion Color Mapping:

{
    'Neutral': 11,
    'Sad': 31,
    'Disgust': 51,
    'Fear': 61,
    'Surprise': 41,
    'Happy': 21,
    'Angry': 1
}

Example:

from algorithmia import get_emotion

emotion = get_emotion()
print(f"Detected emotion: {emotion}")
# Output: "Detected emotion: Happy"

get_playlist()

Description: Generates a personalized music playlist based on detected emotion using cluster-based selection.

Parameters: None

Returns:

  • list: Playlist of song strings in format "XXX.mp3_Song Name - Artist"

Dependencies:

  • Calls get_emotion() internally
  • Reads song database from test.txt

Cluster Mapping:

songlist = {
    1: [1, 170],      # Energetic/Upbeat
    2: [171, 334],    # Moderate Energy
    3: [335, 549],    # Neutral/Mixed
    4: [550, 740],    # Calm/Mellow
    5: [741, 903]     # Intense/Dark
}

Emotion-to-Cluster Logic:

Emotion Cluster Distribution Total Songs
Anger, Fear 5×2, 3×7, 2×12 21 songs
Sad 3×4, 4×4, 2×13 42 songs
Neutral, Disgust, Surprise 3×2, 4×5, 2×7, 1×5 19 songs
Happy 2×10, 4×5, 1×6 21 songs

Algorithm:

  1. Detect current emotion
  2. Select cluster distribution based on emotion
  3. For each cluster in distribution:
    • Randomly select N songs from that cluster's range
  4. Return complete playlist

Example:

from algorithmia import get_playlist

playlist = get_playlist()
print(f"Generated {len(playlist)} songs")
print(f"First song: {playlist[0]}")
# Output: "Generated 21 songs"
# Output: "First song: 741.mp3_Song Name - Artist"

get_emotion_grid()

Description: Creates a visual grid representation of emotion history throughout the listening session.

Parameters: None (uses global emot_list)

Returns: None

Side Effects:

  • Generates matplotlib figure
  • Saves image to static/graph.jpg
  • Displays plot window (plt.show())

Grid Specifications:

  • Size: 5 rows × 10 columns (50 cells)
  • Fill Order: Left-to-right, top-to-bottom
  • Default Color: White (81) for unused cells

Color Scheme:

  • Red: Angry
  • Blue: Neutral
  • Yellow: Happy
  • Green: Sad
  • Cyan: Surprise
  • Magenta: Disgust
  • Black: Fear
  • White: No data

Example:

from algorithmia import get_emotion_grid

# After several emotion detections
get_emotion_grid()
# Creates static/graph.jpg with emotion timeline

Data Formats

Song Database (test.txt)

Format: Pickled Python list

Structure:

[
    "Song Name - Artist",
    "Song Name - Artist",
    ...
]

Total Entries: 903 songs (indices 0-902)

Loading:

import pickle

with open("test.txt", "rb") as fp:
    songnames = pickle.load(fp, encoding='latin1')

Playlist Format

Structure: List of strings

String Format: "{index:03d}.mp3_{song_name}"

Example:

[
    "001.mp3_(Mama) He Treats Your Daughter Mean - Brown",
    "234.mp3_Night in Tunisia - Blakey",
    "567.mp3_Along Came Jones - Coasters"
]

Parsing:

var parts = songlist[i].split("_");
var filename = parts[0];  // "001.mp3"
var displayName = parts[1];  // "Song Name - Artist"

External APIs

Algorithmia EmotionRecognitionCNNMBP

Endpoint: deeplearning/EmotionRecognitionCNNMBP/1.0.1

Authentication: API Key (required)

Input: Binary image data (PNG/JPEG)

Output:

{
    "results": [
        {
            "emotions": [
                {"label": "Happy", "confidence": 0.85},
                {"label": "Sad", "confidence": 0.05},
                {"label": "Angry", "confidence": 0.02},
                {"label": "Neutral", "confidence": 0.03},
                {"label": "Fear", "confidence": 0.01},
                {"label": "Disgust", "confidence": 0.02},
                {"label": "Surprise", "confidence": 0.02}
            ]
        }
    ]
}

Error Cases:

  • Empty results array: No face detected
  • API timeout: Network error
  • Invalid API key: Authentication failure

Configuration

Required Environment Variables

Currently hardcoded, but should be moved to environment variables:

# Algorithmia API Key
ALGORITHMIA_API_KEY = "your-api-key-here"

# Flask Secret Key
FLASK_SECRET_KEY = "your-secret-key-here"

# Server Configuration
FLASK_DEBUG = True
FLASK_HOST = "0.0.0.0"
FLASK_PORT = 5000

File Paths

# Snapshot storage
SNAPSHOT_PATH = "snapshots/pic.png"

# Song database
SONG_DATABASE = "test.txt"

# Music files
MUSIC_DIRECTORY = "static/music/"

# Emotion graph output
GRAPH_OUTPUT = "static/graph.jpg"

Clone this wiki locally