-
Notifications
You must be signed in to change notification settings - Fork 0
gabgoh/adviceanimals
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
Processing Pipeline
1) First parse the raw reddit data from Jason, and scrape thumbnails into thumbs folder (scrapeThumbs.py)
INPUT : data\adviceAnimalsSubmissions
OUTPUT : Thumbnails
2) Precompute Thumbail summaries (createSummaries.py)
This should achieve a compression of the thumbnails into a smalelr 70mb file.
The python file also provides a means of appending metadata from the raw reddit data into the summaries,
such as title, date created, and number of upvotes.
INPUT : Thumbnails, data\adviceAnimalsSubmissions
FILE GENERATED : \ThumbsnailSummaryTitles
3) Precompute Template Summaries (processTemplates.py)
Precompute summaries for templates.
INPUT : Template Pictures
OUTPUT : \templateData
4) Sort Thumbnails according to distance between template and Summary (sortThumbs.py).
Precompute dist(template, thumbnail). Store the distances, sorted (from smallest to biggest),
in a file. (This is done to make the next step smoother)
INPUT : \memeproject\templateData, \memeproject\ThumbsnailSummaryTitles
OUTPUT : thumbssort\*
(note that the output file will have an identical name to the template file, including the extension)
5) Manually pick cutoff, and stragglers using python gui. Create JSON Files (thumbSortToJSON.py)
INPUT : \memeproject\thumbssort\*
OUTPUT : \code\html\*.js
6) Create JSON File of templates for the thumbBar (templatesToJSON.py)
INPUT : \code\html\*.js
OUTPUT : \code\html\templateData.jsAbout
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published