@@ -68,6 +68,34 @@ namespace cppdlr {
68
68
*/
69
69
double k_it_abs (double t, double om);
70
70
71
+ /* *
72
+ * @brief Evaluate fermionic analytic continuation kernel in imaginary frequency using
73
+ * dimensionless variables (beta = 1)
74
+ *
75
+ * @param[in] n Imaginary frequency index
76
+ * @param[in] om Real frequency value
77
+ *
78
+ * @return Value K(i nu_n, om) of analytic continuation kernel
79
+ *
80
+ * \note The definition of the fermionic analytic continuation kernel using dimensionless
81
+ * variables is K(i nu_n, om) = 1 / (i nu_n - om) with i nu_n = (2n+1) * i * pi.
82
+ */
83
+ std::complex<double > k_if_fermion (int n, double om);
84
+
85
+ /* *
86
+ * @brief Evaluate bosonic analytic continuation kernel in imaginary frequency using
87
+ * dimensionless variables (beta = 1)
88
+ *
89
+ * @param[in] n Imaginary frequency index
90
+ * @param[in] om Real frequency value
91
+ *
92
+ * @return Value K(i nu_n, om) of analytic continuation kernel
93
+ *
94
+ * \note The definition of the bosonic analytic continuation kernel using dimensionless
95
+ * variables is K(i nu_n, om) = 1 / (i nu_n - om) with i nu_n = 2n * i * pi.
96
+ */
97
+ std::complex<double > k_if_boson (int n, double om);
98
+
71
99
/* *
72
100
* @brief Evaluate analytic continuation kernel in imaginary frequency using
73
101
* dimensionless variables (beta = 1)
@@ -76,7 +104,7 @@ namespace cppdlr {
76
104
* @param[in] om Real frequency value
77
105
* @param[in] statistic Particle Statistic: Boson or Fermion
78
106
*
79
- * @return Value K(i nu_n,om) of analytic continuation kernel
107
+ * @return Value K(i nu_n, om) of analytic continuation kernel
80
108
*
81
109
* \note The definition of the analytic continuation kernel using dimensionless
82
110
* variables is K(i nu_n, om) = 1 / (i nu_n - om) with i nu_n = (2n+1) * i *
@@ -93,7 +121,7 @@ namespace cppdlr {
93
121
* @param[in] statistic Particle Statistic: Boson or Fermion
94
122
* @param[in] beta Inverse temperature
95
123
*
96
- * @return Value K(i nu_n,om) of analytic continuation kernel
124
+ * @return Value K(i nu_n, om) of analytic continuation kernel
97
125
*
98
126
* \note The definition of the analytic continuation kernel at a given inverse
99
127
* temperature beta is K(i nu_n, om) = 1 / (i nu_n - om) with i nu_n = (2n+1) *
0 commit comments