Please download the official [KITTI 3D object detection] The format of how the dataset is provided:
MMF-AF
├── data
│ ├── kitti
│ │ │── ImageSets
│ │ │── training
│ │ │ ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│ │ │── testing
│ │ │ ├──calib & velodyne & image_2
├── pcdet
├── tools
Run following command to creat dataset infos:
python3 -m pcdet.datasets.kitti.kitti_dataset_mm create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml
This code is mainly based on OpenPCDet.
All the codes are tested in the following environment:
- Linux (tested on Ubuntu 14.04/16.04/18.04/20.04/21.04)
- Python 3.6+
- PyTorch 1.1 or higher
- CUDA 9.0 or higher (PyTorch 1.3+ needs CUDA 9.2+)
- spconv v1.0 (commit 8da6f96) or spconv v1.2 or spconv v2.x
conda create --name MMF-AF python=3.9
conda activate MMF-AF
pip install torch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 -f https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
cd MMF-AF
python setup.py develop
You could optionally add extra command line parameters --batch_size ${BATCH_SIZE} and --epochs ${EPOCHS} to specify your preferred parameters.
- Train with multiple GPUs
sh scripts/dist_train.sh ${NUM_GPUS} --cfg_file ${CONFIG_FILE}- Train with a single GPU:
python train.py --cfg_file ${CONFIG_FILE}-
We can also provide our pretrained models. If you need it, please feel free to contact me
-
Test with a pretrained model:
python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --ckpt ${CKPT}- To test all the saved checkpoints of a specific training setting and draw the performance curve on the Tensorboard, add the
--eval_allargument:
python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --eval_all- To test with multiple GPUs:
sh scripts/dist_test.sh ${NUM_GPUS} --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE}Our approach is inspired by the following outstanding contribution to the open source community: OpenPCDet, CenterNet, AFDet, CenterNet3D, PointPillars.
