Skip to content

fightingand/MMF-AF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MMF-AF

Anchor-free 3D Object Detection using Multimodal Fusion

Overall structure diagram of the method

Dataset Preparation

Please download the official [KITTI 3D object detection] The format of how the dataset is provided:

MMF-AF
├── data
│   ├── kitti
│   │   │── ImageSets
│   │   │── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│   │   │── testing
│   │   │   ├──calib & velodyne & image_2
├── pcdet
├── tools

Run following command to creat dataset infos:

python3 -m pcdet.datasets.kitti.kitti_dataset_mm create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml

Installation

This code is mainly based on OpenPCDet.

All the codes are tested in the following environment:

  • Linux (tested on Ubuntu 14.04/16.04/18.04/20.04/21.04)
  • Python 3.6+
  • PyTorch 1.1 or higher
  • CUDA 9.0 or higher (PyTorch 1.3+ needs CUDA 9.2+)
  • spconv v1.0 (commit 8da6f96) or spconv v1.2 or spconv v2.x

Create conda environment and set up the base dependencies

conda create --name MMF-AF python=3.9
conda activate MMF-AF
pip install torch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 -f https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
cd MMF-AF
python setup.py develop

Train a model

You could optionally add extra command line parameters --batch_size ${BATCH_SIZE} and --epochs ${EPOCHS} to specify your preferred parameters.

  • Train with multiple GPUs
sh scripts/dist_train.sh ${NUM_GPUS} --cfg_file ${CONFIG_FILE}
  • Train with a single GPU:
python train.py --cfg_file ${CONFIG_FILE}

Test and evaluate the pretrained models

  • We can also provide our pretrained models. If you need it, please feel free to contact me

  • Test with a pretrained model:

python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --ckpt ${CKPT}
  • To test all the saved checkpoints of a specific training setting and draw the performance curve on the Tensorboard, add the --eval_all argument:
python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --eval_all
  • To test with multiple GPUs:
sh scripts/dist_test.sh ${NUM_GPUS} --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE}

Acknowledgement

Our approach is inspired by the following outstanding contribution to the open source community: OpenPCDet, CenterNet, AFDet, CenterNet3D, PointPillars.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published