-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: Initial implementation of anemoi-models Co-authored-by: Jesper Dramsch <[email protected]> Co-authored-by: Simon Lang <[email protected]> Co-authored-by: Matthew Chantry <[email protected]> Co-authored-by: Mihai Alexe <[email protected]> Co-authored-by: Florian Pinault <[email protected]> Co-authored-by: Baudouin Raoult <[email protected]> Co-authored-by: Steffen Tietsche <[email protected]> Co-authored-by: Sara Hahner <[email protected]> Co-authored-by: Mariana Clare <[email protected]>
- Loading branch information
1 parent
eb7a642
commit 6f053a8
Showing
46 changed files
with
2,783 additions
and
173 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
# (C) Copyright 2024 ECMWF. | ||
# | ||
# This software is licensed under the terms of the Apache Licence Version 2.0 | ||
# which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. | ||
# In applying this licence, ECMWF does not waive the privileges and immunities | ||
# granted to it by virtue of its status as an intergovernmental organisation | ||
# nor does it submit to any jurisdiction. | ||
# | ||
|
||
import operator | ||
|
||
import yaml | ||
from omegaconf import OmegaConf | ||
|
||
from anemoi.models.data_indices.index import BaseIndex | ||
from anemoi.models.data_indices.index import DataIndex | ||
from anemoi.models.data_indices.index import ModelIndex | ||
from anemoi.models.data_indices.tensor import BaseTensorIndex | ||
from anemoi.models.data_indices.tensor import InputTensorIndex | ||
from anemoi.models.data_indices.tensor import OutputTensorIndex | ||
|
||
|
||
class IndexCollection: | ||
"""Collection of data and model indices.""" | ||
|
||
def __init__(self, config, name_to_index) -> None: | ||
self.config = OmegaConf.to_container(config, resolve=True) | ||
|
||
self.forcing = [] if config.data.forcing is None else OmegaConf.to_container(config.data.forcing, resolve=True) | ||
self.diagnostic = ( | ||
[] if config.data.diagnostic is None else OmegaConf.to_container(config.data.diagnostic, resolve=True) | ||
) | ||
|
||
assert set(self.diagnostic).isdisjoint(self.forcing), ( | ||
f"Diagnostic and forcing variables overlap: {set(self.diagnostic).intersection(self.forcing)}. ", | ||
"Please drop them at a dataset-level to exclude them from the training data.", | ||
) | ||
self.name_to_index = dict(sorted(name_to_index.items(), key=operator.itemgetter(1))) | ||
name_to_index_model_input = { | ||
name: i for i, name in enumerate(key for key in self.name_to_index if key not in self.diagnostic) | ||
} | ||
name_to_index_model_output = { | ||
name: i for i, name in enumerate(key for key in self.name_to_index if key not in self.forcing) | ||
} | ||
|
||
self.data = DataIndex(self.diagnostic, self.forcing, self.name_to_index) | ||
self.model = ModelIndex(self.diagnostic, self.forcing, name_to_index_model_input, name_to_index_model_output) | ||
|
||
def __repr__(self) -> str: | ||
return f"IndexCollection(config={self.config}, name_to_index={self.name_to_index})" | ||
|
||
def __eq__(self, other): | ||
if not isinstance(other, IndexCollection): | ||
# don't attempt to compare against unrelated types | ||
return NotImplemented | ||
|
||
return self.model == other.model and self.data == other.data | ||
|
||
def __getitem__(self, key): | ||
return getattr(self, key) | ||
|
||
def todict(self): | ||
return { | ||
"data": self.data.todict(), | ||
"model": self.model.todict(), | ||
} | ||
|
||
@staticmethod | ||
def representer(dumper, data): | ||
return dumper.represent_scalar(f"!{data.__class__.__name__}", repr(data)) | ||
|
||
|
||
for cls in [BaseTensorIndex, InputTensorIndex, OutputTensorIndex, BaseIndex, DataIndex, ModelIndex, IndexCollection]: | ||
yaml.add_representer(cls, cls.representer) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
# (C) Copyright 2024 ECMWF. | ||
# | ||
# This software is licensed under the terms of the Apache Licence Version 2.0 | ||
# which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. | ||
# In applying this licence, ECMWF does not waive the privileges and immunities | ||
# granted to it by virtue of its status as an intergovernmental organisation | ||
# nor does it submit to any jurisdiction. | ||
# | ||
|
||
from anemoi.models.data_indices.tensor import InputTensorIndex | ||
from anemoi.models.data_indices.tensor import OutputTensorIndex | ||
|
||
|
||
class BaseIndex: | ||
"""Base class for data and model indices.""" | ||
|
||
def __init__(self) -> None: | ||
self.input = NotImplementedError | ||
self.output = NotImplementedError | ||
|
||
def __eq__(self, other): | ||
if not isinstance(other, BaseIndex): | ||
# don't attempt to compare against unrelated types | ||
return NotImplemented | ||
|
||
return self.input == other.input and self.output == other.output | ||
|
||
def __repr__(self) -> str: | ||
return f"{self.__class__.__name__}(input={self.input}, output={self.output})" | ||
|
||
def __getitem__(self, key): | ||
return getattr(self, key) | ||
|
||
def todict(self): | ||
return { | ||
"input": self.input.todict(), | ||
"output": self.output.todict(), | ||
} | ||
|
||
@staticmethod | ||
def representer(dumper, data): | ||
return dumper.represent_scalar(f"!{data.__class__.__name__}", repr(data)) | ||
|
||
|
||
class DataIndex(BaseIndex): | ||
"""Indexing for data variables.""" | ||
|
||
def __init__(self, diagnostic, forcing, name_to_index) -> None: | ||
self._diagnostic = diagnostic | ||
self._forcing = forcing | ||
self._name_to_index = name_to_index | ||
self.input = InputTensorIndex( | ||
includes=forcing, | ||
excludes=diagnostic, | ||
name_to_index=name_to_index, | ||
) | ||
|
||
self.output = OutputTensorIndex( | ||
includes=diagnostic, | ||
excludes=forcing, | ||
name_to_index=name_to_index, | ||
) | ||
|
||
def __repr__(self) -> str: | ||
return f"{self.__class__.__name__}(diagnostic={self._input}, forcing={self._output}, name_to_index={self._name_to_index})" | ||
|
||
|
||
class ModelIndex(BaseIndex): | ||
"""Indexing for model variables.""" | ||
|
||
def __init__(self, diagnostic, forcing, name_to_index_model_input, name_to_index_model_output) -> None: | ||
self._diagnostic = diagnostic | ||
self._forcing = forcing | ||
self._name_to_index_model_input = name_to_index_model_input | ||
self._name_to_index_model_output = name_to_index_model_output | ||
self.input = InputTensorIndex( | ||
includes=forcing, | ||
excludes=[], | ||
name_to_index=name_to_index_model_input, | ||
) | ||
|
||
self.output = OutputTensorIndex( | ||
includes=diagnostic, | ||
excludes=[], | ||
name_to_index=name_to_index_model_output, | ||
) | ||
|
||
def __repr__(self) -> str: | ||
return ( | ||
f"{self.__class__.__name__}(diagnostic={self._input}, forcing={self._output}, " | ||
f"name_to_index_model_input={self._name_to_index_model_input}, " | ||
f"name_to_index_model_output={self._name_to_index_model_output})" | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
# (C) Copyright 2024 ECMWF. | ||
# | ||
# This software is licensed under the terms of the Apache Licence Version 2.0 | ||
# which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. | ||
# In applying this licence, ECMWF does not waive the privileges and immunities | ||
# granted to it by virtue of its status as an intergovernmental organisation | ||
# nor does it submit to any jurisdiction. | ||
# | ||
|
||
import torch | ||
|
||
|
||
class BaseTensorIndex: | ||
"""Indexing for variables in index as Tensor.""" | ||
|
||
def __init__(self, *, includes: list[str], excludes: list[str], name_to_index: dict[str, int]) -> None: | ||
"""Initialize indexing tensors from includes and excludes using name_to_index. | ||
Parameters | ||
---------- | ||
includes : list[str] | ||
Variables to include in the indexing that are exclusive to this indexing. | ||
e.g. Forcing variables for the input indexing, diagnostic variables for the output indexing | ||
excludes : list[str] | ||
Variables to exclude from the indexing. | ||
e.g. Diagnostic variables for the input indexing, forcing variables for the output indexing | ||
name_to_index : dict[str, int] | ||
Dictionary mapping variable names to their index in the Tensor. | ||
""" | ||
self.includes = includes | ||
self.excludes = excludes | ||
self.name_to_index = name_to_index | ||
|
||
assert set(self.excludes).issubset( | ||
self.name_to_index.keys(), | ||
), f"Data indexing has invalid entries {[var for var in self.excludes if var not in self.name_to_index]}, not in dataset." | ||
assert set(self.includes).issubset( | ||
self.name_to_index.keys(), | ||
), f"Data indexing has invalid entries {[var for var in self.includes if var not in self.name_to_index]}, not in dataset." | ||
|
||
self.full = self._build_idx_from_excludes() | ||
self._only = self._build_idx_from_includes() | ||
self._removed = self._build_idx_from_includes(self.excludes) | ||
self.prognostic = self._build_idx_prognostic() | ||
self.diagnostic = NotImplementedError | ||
self.forcing = NotImplementedError | ||
|
||
def __len__(self) -> int: | ||
return len(self.full) | ||
|
||
def __repr__(self) -> str: | ||
return f"{self.__class__.__name__}(includes={self.includes}, excludes={self.excludes}, name_to_index={self.name_to_index})" | ||
|
||
def __eq__(self, other): | ||
if not isinstance(other, BaseTensorIndex): | ||
# don't attempt to compare against unrelated types | ||
return NotImplemented | ||
|
||
return ( | ||
torch.allclose(self.full, other.full) | ||
and torch.allclose(self._only, other._only) | ||
and torch.allclose(self._removed, other._removed) | ||
and torch.allclose(self.prognostic, other.prognostic) | ||
and torch.allclose(self.diagnostic, other.diagnostic) | ||
and torch.allclose(self.forcing, other.forcing) | ||
and self.includes == other.includes | ||
and self.excludes == other.excludes | ||
) | ||
|
||
def __getitem__(self, key): | ||
return getattr(self, key) | ||
|
||
def todict(self): | ||
return { | ||
"full": self.full, | ||
"prognostic": self.prognostic, | ||
"diagnostic": self.diagnostic, | ||
"forcing": self.forcing, | ||
} | ||
|
||
@staticmethod | ||
def representer(dumper, data): | ||
return dumper.represent_scalar(f"!{data.__class__.__name__}", repr(data)) | ||
|
||
def _build_idx_from_excludes(self, excludes=None) -> "torch.Tensor[int]": | ||
if excludes is None: | ||
excludes = self.excludes | ||
return torch.Tensor(sorted(i for name, i in self.name_to_index.items() if name not in excludes)).to(torch.int) | ||
|
||
def _build_idx_from_includes(self, includes=None) -> "torch.Tensor[int]": | ||
if includes is None: | ||
includes = self.includes | ||
return torch.Tensor(sorted(self.name_to_index[name] for name in includes)).to(torch.int) | ||
|
||
def _build_idx_prognostic(self) -> "torch.Tensor[int]": | ||
return self._build_idx_from_excludes(self.includes + self.excludes) | ||
|
||
|
||
class InputTensorIndex(BaseTensorIndex): | ||
"""Indexing for input variables.""" | ||
|
||
def __init__(self, *, includes: list[str], excludes: list[str], name_to_index: dict[str, int]) -> None: | ||
super().__init__(includes=includes, excludes=excludes, name_to_index=name_to_index) | ||
self.forcing = self._only | ||
self.diagnostic = self._removed | ||
|
||
|
||
class OutputTensorIndex(BaseTensorIndex): | ||
"""Indexing for output variables.""" | ||
|
||
def __init__(self, *, includes: list[str], excludes: list[str], name_to_index: dict[str, int]) -> None: | ||
super().__init__(includes=includes, excludes=excludes, name_to_index=name_to_index) | ||
self.forcing = self._removed | ||
self.diagnostic = self._only |
Oops, something went wrong.