Skip to content
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
100 changes: 100 additions & 0 deletions dwave/plugins/torch/nn/modules/networks.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
# Copyright 2025 D-Wave
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
from torch import nn

from dwave.plugins.torch.nn.modules.conv import ConvolutionBlock, SkipConv2d
from dwave.plugins.torch.nn.modules.linear import LinearBlock, SkipLinear
from dwave.plugins.torch.nn.modules.vision import CACBlock


class FullyConnectedNetwork(nn.Module):
def __init__(self, din, dout, depth, sn, p) -> None:
super().__init__(self, vars())
if depth == 1:
raise ValueError("Depth must be at least 2.")
self.skip = SkipLinear(din, dout)
big_d = max(din, dout)
dims = [big_d]*(depth-1) + [dout]
self.blocks = nn.Sequential()
for d_in, d_out in zip([din]+dims[:-1], dims):
self.blocks.append(LinearBlock(d_in, d_out, sn, p))
self.blocks.append(nn.Dropout(p))
self.blocks.append(nn.ReLU())
# Remove the last ReLU and Dropout
self.blocks.pop(-1)
self.blocks.pop(-1)

def forward(self, x):
return self.blocks(x) + self.skip(x)


class ConvolutionNetwork(nn.Module):
def __init__(
self, channels: list[int], input_shape: tuple[int, int, int]
):
super().__init__(self, vars())
channels = channels.copy()
input_shape = tuple(input_shape)
cx, hx, wx = input_shape
if hx != wx:
raise NotImplementedError("TODO")
self.channels = channels
self.cin = cx
self.cout = self.channels[-1]
self.input_shape = input_shape

channels_in = [cx] + channels[:-1]
self.blocks = nn.Sequential()
for cin, cout in zip(channels_in, channels):
self.blocks.append(ConvolutionBlock((cin, hx, wx), cout))
self.blocks.append(nn.ReLU())
self.blocks.pop(-1)
self.skip = SkipConv2d(cx, cout)

def forward(self, x):
x = self.blocks(x) + self.skip(x)
return x


class CACNetwork(nn.Module):
def __init__(
self, channels: list[int], input_shape: tuple[int, int, int], ps: int, heads: int
):
super().__init__(self, vars())
channels = channels.copy()
input_shape = tuple(input_shape)
cx, hx, wx = input_shape
if hx != wx:
raise NotImplementedError("TODO")
self.channels = channels
self.cin = cx
self.cout = self.channels[-1]
self.input_shape = input_shape

channels_in = [cx] + channels[:-1]
self.activations = nn.ModuleList()
self.blocks = nn.ModuleList()
self.skips = nn.ModuleList()
for cin, cout in zip(channels_in, channels):
self.blocks.append(CACBlock((cin, hx, wx), cout, ps, heads))
self.skips.append(SkipConv2d(cin, cout))
self.activations.append(nn.ReLU())
self.activations[-1] = torch.nn.Identity()

def forward(self, x):
for block, skip, act in zip(self.blocks, self.skips, self.activations):
x = act(block(x) + skip(x))
return x