-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
059a96b
commit 2d734d3
Showing
4 changed files
with
257 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,3 @@ | ||
from .cli import GLOBAL_CONTEXT_SETTINGS, print_version | ||
from .md import markdown_to_df | ||
from .pe import float_pe |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
import click | ||
from click.core import Context, Option | ||
|
||
GLOBAL_CONTEXT_SETTINGS = dict( | ||
help_option_names=['-h', '--help'] | ||
) | ||
|
||
|
||
def print_version(module, ctx: Context, param: Option, value: bool) -> None: | ||
""" | ||
Print version information of cli | ||
:param module: current module using this cli. | ||
:param ctx: click context | ||
:param param: current parameter's metadata | ||
:param value: value of current parameter | ||
""" | ||
_ = param | ||
if not value or ctx.resilient_parsing: | ||
return # pragma: no cover | ||
|
||
click.echo(f'Module utils of {module}') | ||
ctx.exit() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
def float_pe(v: float, gnum: int = 3) -> str: | ||
texts = [ | ||
f'{v:.{gnum}g}', | ||
f'{v / 1e3:.{gnum}g}k', | ||
f'{v / 1e6:.{gnum}g}M', | ||
f'{v / 1e9:.{gnum}g}G', | ||
] | ||
|
||
best_text = None | ||
for text in texts: | ||
if best_text is None or len(text) < len(best_text): | ||
best_text = text | ||
|
||
return best_text |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,219 @@ | ||
import io | ||
import json | ||
import os.path | ||
|
||
import click | ||
import numpy as np | ||
import pandas as pd | ||
from ditk import logging | ||
from hbutils.string import plural_word | ||
from hbutils.system import TemporaryDirectory | ||
from hfutils.operate import get_hf_fs, get_hf_client, upload_directory_as_directory | ||
from hfutils.repository import hf_hub_repo_file_url | ||
from hfutils.utils import hf_fs_path, parse_hf_fs_path | ||
from huggingface_hub.hf_api import RepoFile | ||
from tqdm import tqdm | ||
from ultralytics import YOLO, RTDETR | ||
from ultralytics.utils.torch_utils import get_num_params, get_flops | ||
|
||
from ..utils import GLOBAL_CONTEXT_SETTINGS, float_pe, markdown_to_df | ||
|
||
|
||
@click.command('huggingface', context_settings={**GLOBAL_CONTEXT_SETTINGS}, | ||
help='Publish model to huggingface model repository') | ||
@click.option('--repository', '-r', 'repository', type=str, default='deepghs/yolos', | ||
help='Repository for publishing model.', show_default=True) | ||
@click.option('--revision', '-R', 'revision', type=str, default='main', | ||
help='Revision for pushing the model.', show_default=True) | ||
def list_(repository: str, revision: str = 'main'): | ||
logging.try_init_root(logging.INFO) | ||
rows = [] | ||
hf_fs = get_hf_fs() | ||
hf_client = get_hf_client() | ||
|
||
d_labels = {} | ||
d_thresholds = {} | ||
d_model_types = {} | ||
for pt_path in tqdm(hf_fs.glob(hf_fs_path( | ||
repo_id=repository, | ||
repo_type='model', | ||
filename='*/model.pt', | ||
revision=revision, | ||
))): | ||
pt_file = parse_hf_fs_path(pt_path).filename | ||
name = os.path.dirname(pt_file) | ||
|
||
if hf_fs.exists(f'{repository}/{name}/model_type.json'): | ||
model_type = json.loads(hf_fs.read_text(f'{repository}/{name}/model_type.json'))['model_type'] | ||
else: | ||
model_type = 'yolo' | ||
d_model_types[name] = model_type | ||
if model_type == 'yolo': | ||
model_cls = YOLO | ||
else: | ||
model_cls = RTDETR | ||
|
||
logging.info(f'Making information for {name!r} ...') | ||
model = model_cls(hf_client.hf_hub_download( | ||
repo_id=repository, | ||
repo_type='model', | ||
filename=pt_file, | ||
revision=revision, | ||
)) | ||
|
||
repo_file: RepoFile = list(hf_client.get_paths_info( | ||
repo_id=repository, | ||
repo_type='model', | ||
paths=[f'{name}/model.pt'], | ||
expand=True, | ||
))[0] | ||
last_commit_at = repo_file.last_commit.date.timestamp() | ||
|
||
names_map = model.names | ||
labels = [names_map[i] for i in range(len(names_map))] | ||
metrics = { | ||
key.split('/', maxsplit=1)[-1]: value | ||
for key, value in dict(model.ckpt.get('train_metrics') or {}).items() | ||
if key.startswith('metrics/') | ||
} | ||
row = { | ||
'Model': name, | ||
'Type': model_type, | ||
'FLOPS': float_pe(get_flops(model.model) * 1e9), | ||
'Params': float_pe(get_num_params(model.model)), | ||
} | ||
|
||
row = {**row, **metrics} | ||
if hf_fs.exists(hf_fs_path( | ||
repo_id=repository, | ||
repo_type='model', | ||
filename=f'{name}/F1_curve.png', | ||
revision=revision, | ||
)): | ||
file_url = hf_hub_repo_file_url( | ||
repo_id=repository, | ||
repo_type='model', | ||
path=f'{name}/F1_curve.png', | ||
revision=revision, | ||
) | ||
row['F1 Plot'] = f'[plot]({file_url})' | ||
else: | ||
logging.warning(f'No F1 plot image found for {name!r}.') | ||
|
||
if hf_fs.exists(hf_fs_path( | ||
repo_id=repository, | ||
repo_type='model', | ||
filename=f'{name}/confusion_matrix_normalized.png', | ||
revision=revision, | ||
)): | ||
file_url = hf_hub_repo_file_url( | ||
repo_id=repository, | ||
repo_type='model', | ||
path=f'{name}/confusion_matrix_normalized.png', | ||
revision=revision, | ||
) | ||
row['Confusion'] = f'[confusion]({file_url})' | ||
elif hf_fs.exists(hf_fs_path( | ||
repo_id=repository, | ||
repo_type='model', | ||
filename=f'{name}/confusion_matrix.png', | ||
revision=revision, | ||
)): | ||
file_url = hf_hub_repo_file_url( | ||
repo_id=repository, | ||
repo_type='model', | ||
path=f'{name}/confusion_matrix.png', | ||
revision=revision, | ||
) | ||
row['Confusion'] = f'[confusion]({file_url})' | ||
else: | ||
logging.warning(f'No confusion matrix found for {name!r}.') | ||
d_labels[name] = labels | ||
if len(labels) <= 5: | ||
label_text = ', '.join(map(lambda x: f'`{x}`', labels)) | ||
row['Labels'] = label_text | ||
else: | ||
label_text = ', '.join(map(lambda x: f'`{x}`', labels[:5])) + \ | ||
f' ... {plural_word(len(labels), "label")} in total' | ||
file_url = hf_hub_repo_file_url( | ||
repo_id=repository, | ||
repo_type='model', | ||
path=f'{name}/labels.json', | ||
revision=revision, | ||
) | ||
row['Labels'] = f'[{label_text}]({file_url})' | ||
row['created_at'] = last_commit_at | ||
rows.append(row) | ||
|
||
df = pd.DataFrame(rows) | ||
df = df.sort_values(by=['created_at'], ascending=[False]) | ||
del df['created_at'] | ||
df = df.replace(np.nan, 'N/A') | ||
|
||
with TemporaryDirectory() as td: | ||
for name, labels in d_labels.items(): | ||
os.makedirs(os.path.join(td, name), exist_ok=True) | ||
with open(os.path.join(td, name, 'labels.json'), 'w') as f: | ||
json.dump(labels, f, ensure_ascii=False, indent=4) | ||
for name, (max_f1_score, threshold) in d_thresholds.items(): | ||
os.makedirs(os.path.join(td, name), exist_ok=True) | ||
with open(os.path.join(td, name, 'threshold.json'), 'w') as f: | ||
json.dump({ | ||
'f1_score': max_f1_score, | ||
'threshold': threshold, | ||
}, f, ensure_ascii=False, indent=4) | ||
for name, model_type in d_model_types.items(): | ||
os.makedirs(os.path.join(td, name), exist_ok=True) | ||
with open(os.path.join(td, name, 'model_type.json'), 'w') as f: | ||
json.dump({'model_type': model_type}, f, ensure_ascii=False, indent=4) | ||
|
||
with open(os.path.join(td, 'README.md'), 'w') as f: | ||
if not hf_fs.exists(hf_fs_path( | ||
repo_id=repository, | ||
repo_type='model', | ||
filename='README.md', | ||
revision=revision, | ||
)): | ||
print(df.to_markdown(index=False, numalign="center", stralign="center"), file=f) | ||
|
||
else: | ||
table_printed = False | ||
tb_lines = [] | ||
with io.StringIO(hf_fs.read_text(hf_fs_path( | ||
repo_id=repository, | ||
repo_type='model', | ||
filename='README.md', | ||
revision=revision, | ||
)).rstrip() + os.linesep * 2) as ifx: | ||
for line in ifx: | ||
line = line.rstrip() | ||
if line.startswith('|') and not table_printed: | ||
tb_lines.append(line) | ||
else: | ||
if tb_lines: | ||
df_c = markdown_to_df(os.linesep.join(tb_lines)) | ||
if 'Model' in df_c.columns and 'FLOPS' in df_c.columns and \ | ||
'Params' in df_c.columns and 'Labels' in df_c.columns: | ||
print(df.to_markdown(index=False, numalign="center", stralign="center"), file=f) | ||
table_printed = True | ||
tb_lines.clear() | ||
else: | ||
print(os.linesep.join(tb_lines), file=f) | ||
print(line, file=f) | ||
|
||
if not table_printed: | ||
print(df.to_markdown(index=False, numalign="center", stralign="center"), file=f) | ||
|
||
upload_directory_as_directory( | ||
repo_id=repository, | ||
repo_type='model', | ||
revision=revision, | ||
path_in_repo='.', | ||
local_directory=td, | ||
message=f'Sync README for {repository}', | ||
hf_token=os.environ.get('HF_TOKEN'), | ||
) | ||
|
||
|
||
if __name__ == '__main__': | ||
list_() |