-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSesion1_matlab.html
232 lines (226 loc) · 149 KB
/
Sesion1_matlab.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge,IE=9,chrome=1"><meta name="generator" content="MATLAB 2024b"><title>Sesion 1: Introducción a MATLAB</title><style type="text/css">.rtcContent { padding: 30px; } .S0 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 28.8px; min-height: 0px; white-space: pre-wrap; color: rgb(192, 76, 11); font-family: Helvetica, Arial, sans-serif, Helvetica, Arial, sans-serif; font-style: normal; font-size: 24px; font-weight: 400; text-align: left; }
.S1 { margin: 20px 10px 5px 4px; padding: 0px; line-height: 25px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif, Helvetica, Arial, sans-serif; font-style: normal; font-size: 20px; font-weight: 700; text-align: left; }
.S2 { margin: 2px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif, Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: 400; text-align: left; }
.S3 { margin: 10px 0px 20px; padding-left: 0px; font-family: Helvetica, Arial, sans-serif, Helvetica, Arial, sans-serif; font-size: 14px; }
.S4 { margin-left: 56px; line-height: 21px; min-height: 0px; text-align: left; white-space: pre-wrap; }
.S5 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 25px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif, Helvetica, Arial, sans-serif; font-style: normal; font-size: 20px; font-weight: 700; text-align: left; }
.S6 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 18px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif, Helvetica, Arial, sans-serif; font-style: normal; font-size: 17px; font-weight: 700; text-align: left; }
.CodeBlock { background-color: #F5F5F5; margin: 10px 15px 10px 0; display: inline-block }
.eoOutputWrapper { width: calc(90vw - 10px) !important; }
.S7 { border-left: 1px solid rgb(217, 217, 217); border-right: 1px solid rgb(217, 217, 217); border-top: 1px solid rgb(217, 217, 217); border-bottom: 1px solid rgb(217, 217, 217); border-radius: 4px 4px 0px 0px; padding: 6px 45px 4px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace, Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S8 { color: rgb(33, 33, 33); padding: 10px 0px 6px 17px; background: rgb(255, 255, 255) none repeat scroll 0% 0% / auto padding-box border-box; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; overflow-x: hidden; line-height: 17.234px; }
.S9 { border-left: 1px solid rgb(217, 217, 217); border-right: 1px solid rgb(217, 217, 217); border-top: 1px solid rgb(217, 217, 217); border-bottom: 0px none rgb(33, 33, 33); border-radius: 0px; padding: 6px 45px 0px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace, Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S10 { border-left: 1px solid rgb(217, 217, 217); border-right: 1px solid rgb(217, 217, 217); border-top: 0px none rgb(33, 33, 33); border-bottom: 1px solid rgb(217, 217, 217); border-radius: 0px; padding: 0px 45px 4px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace, Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.variableValue { width: 100% !important; }
.embeddedOutputsMatrixElement,.eoOutputWrapper .matrixElement { min-height: 18px; box-sizing: border-box;}
.embeddedOutputsMatrixElement .matrixElement,.eoOutputWrapper .matrixElement,.rtcDataTipElement .matrixElement { position: relative;}
.matrixElement .variableValue,.rtcDataTipElement .matrixElement .variableValue { white-space: pre; display: inline-block; vertical-align: top; overflow: hidden;}
.embeddedOutputsMatrixElement.inlineElement {}
.embeddedOutputsMatrixElement.inlineElement .topHeaderWrapper { display: none;}
.embeddedOutputsMatrixElement.inlineElement .veTable .body { padding-top: 0 !important; max-height: 100px;}
.inlineElement .matrixElement { max-height: 300px;}
.embeddedOutputsMatrixElement.rightPaneElement {}
.rightPaneElement .matrixElement,.rtcDataTipElement .matrixElement { overflow: hidden; padding-left: 9px;}
.rightPaneElement .matrixElement { margin-bottom: -1px;}
.embeddedOutputsMatrixElement .matrixElement .valueContainer,.eoOutputWrapper .matrixElement .valueContainer,.rtcDataTipElement .matrixElement .valueContainer { white-space: nowrap; margin-bottom: 3px;}
.embeddedOutputsMatrixElement .matrixElement .valueContainer .horizontalEllipsis.hide,.embeddedOutputsMatrixElement .matrixElement .verticalEllipsis.hide,.eoOutputWrapper .matrixElement .valueContainer .horizontalEllipsis.hide,.eoOutputWrapper .matrixElement .verticalEllipsis.hide,.rtcDataTipElement .matrixElement .valueContainer .horizontalEllipsis.hide,.rtcDataTipElement .matrixElement .verticalEllipsis.hide { display: none;}
.embeddedOutputsVariableMatrixElement .matrixElement .valueContainer.hideEllipses .verticalEllipsis, .embeddedOutputsVariableMatrixElement .matrixElement .valueContainer.hideEllipses .horizontalEllipsis { display:none;}
.eoOutputWrapper .embeddedOutputsVariableMatrixElement .matrixElement .valueContainer { cursor: default !important;}
.embeddedOutputsVariableElement { white-space: pre-wrap; word-wrap: break-word; min-height: 18px; max-height: 250px; overflow: auto;}
.eoOutputWrapper .variableElement { padding-top: 2px;}
.embeddedOutputsVariableElement.inlineElement {}
.inlineElement .variableElement {}
.embeddedOutputsVariableElement.rightPaneElement { min-height: 16px;}
.rightPaneElement .variableElement { padding-left: 9px;}
.outputsOnRight .embeddedOutputsVariableElement.rightPaneElement .eoOutputContent { /* Remove extra space allocated for navigation border */ margin-top: 0; margin-bottom: 0;}
.variableNameElement { margin-bottom: 3px; display: inline-block;}
/* * Ellipses as base64 for HTML export. */.matrixElement .horizontalEllipsis,.rtcDataTipElement .matrixElement .horizontalEllipsis { display: inline-block; margin-top: 3px; /* base64 encoded version of images-liveeditor/HEllipsis.png */ width: 30px; height: 12px; background-repeat: no-repeat; background-image: url("");}
.matrixElement .verticalEllipsis,.textElement .verticalEllipsis,.rtcDataTipElement .matrixElement .verticalEllipsis,.rtcDataTipElement .textElement .verticalEllipsis { margin-left: 35px; /* base64 encoded version of images-liveeditor/VEllipsis.png */ width: 12px; height: 30px; background-repeat: no-repeat; background-image: url("");}
.S11 { border-left: 1px solid rgb(217, 217, 217); border-right: 1px solid rgb(217, 217, 217); border-top: 1px solid rgb(217, 217, 217); border-bottom: 1px solid rgb(217, 217, 217); border-radius: 0px; padding: 6px 45px 4px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace, Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S12 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 18px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif, Helvetica, Arial, sans-serif; font-style: normal; font-size: 17px; font-weight: 700; text-align: left; }
.S13 { border-left: 1px solid rgb(217, 217, 217); border-right: 1px solid rgb(217, 217, 217); border-top: 1px solid rgb(217, 217, 217); border-bottom: 0px none rgb(33, 33, 33); border-radius: 4px 4px 0px 0px; padding: 6px 45px 0px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace, Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S14 { border-left: 1px solid rgb(217, 217, 217); border-right: 1px solid rgb(217, 217, 217); border-top: 0px none rgb(33, 33, 33); border-bottom: 0px none rgb(33, 33, 33); border-radius: 0px; padding: 0px 45px 0px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace, Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S15 { border-left: 1px solid rgb(217, 217, 217); border-right: 1px solid rgb(217, 217, 217); border-top: 0px none rgb(33, 33, 33); border-bottom: 1px solid rgb(217, 217, 217); border-radius: 0px 0px 4px 4px; padding: 0px 45px 4px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace, Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }</style></head><body><div class = rtcContent><h1 class = 'S0'><span>Sesion 1: Introducción a MATLAB</span></h1><h2 class = 'S1'><span>Trabajando con MATLAB</span></h2><div class = 'S2'><span>En la práctica uno debe conocer</span></div><ul class = 'S3'><li class = 'S4'><span>Entorno de trabajo: ventana de comandos, workspace, barras de herramientas</span></li><li class = 'S4'><span>Editores de scripts: scripts, funciones, livescripts</span></li><li class = 'S4'><span>Fundamentos básicos</span></li><li class = 'S4'><span>IA de MATLAB</span></li><li class = 'S4'><span>Atajos de teclado</span></li></ul><h2 class = 'S5'><span>Livescripts en MATLAB</span></h2><h3 class = 'S6'><span>Características:</span></h3><ul class = 'S3'><li class = 'S4'><span>Extensión .mlx (por ejemplo, Sesion</span><span style=' font-family: monospace;'>1_matlab.mlx</span><span>)</span></li><li class = 'S4'><span>Integra texto (Markdown) y comandos de MATLAB</span></li><li class = 'S4'><span>Organización por secciones</span></li><li class = 'S4'><span>Manejo de funciones de usuario en el mismo documento</span></li></ul><h3 class = 'S6'><span>Atajos de teclado</span></h3><ul class = 'S3'><li class = 'S4'><span style=' font-family: monospace;'>Ctrl +</span><span>: Zoom</span></li><li class = 'S4'><span style=' font-family: monospace;'>Ctrl + N</span><span>: Nuevo script</span></li><li class = 'S4'><span style=' font-family: monospace;'>Ctrl + S</span><span>: Guardar script</span></li><li class = 'S4'><span style=' font-family: monospace;'>Ctrl + Enter</span><span>: Ejecutar una sección</span></li></ul><h3 class = 'S6'><span>Modo MATLAB</span></h3><div class="CodeBlock"><div class="inlineWrapper outputs"><div class = 'S7'><span style="white-space: pre"><span >a=1000</span></span></div><div class = 'S8'><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>a = 1000</div></div></div><div class="inlineWrapper"><div class = 'S9'><span style="white-space: pre"><span >A=[1 2; </span></span></div></div><div class="inlineWrapper outputs"><div class = 'S10'><span style="white-space: pre"><span > 2 1]</span></span></div><div class = 'S8'><div class="inlineElement eoOutputWrapper disableDefaultGestureHandling embeddedOutputsVariableMatrixElement" uid="77836869" prevent-scroll="true" data-testid="output_1" data-width="1014" tabindex="-1" style="width: 1044px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="matrixElement veSpecifier saveLoad eoOutputContent" role="article" aria-roledescription="Use Browse Mode to explore " aria-description="variable output " style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 1014px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">A = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: italic; color: rgb(97, 97, 97); font-size: 12px;">2×2</span></div></div><div class="valueContainer" data-layout="{"columnWidth":40,"totalColumns":2,"totalRows":2,"charsPerColumn":6}" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="variableValue" style="width: 82px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"> 1 2
2 1
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><mw-icon icon-id="meatballMenuUI" icon-width="16" icon-height="16" icon-config="{}" svg-path="" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></mw-icon></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><mw-icon icon-id="kebabMenuUI" icon-width="16" icon-height="16" icon-config="{}" svg-path="" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></mw-icon></div></div></div><div class="outputLayer selectedOutputDecorationLayer doNotExport" aria-hidden="true" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer activeOutputDecorationLayer doNotExport" aria-hidden="true" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer scrollableOutputDecorationLayer doNotExport" aria-hidden="true" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer navigationFocusLayer doNotExport" aria-hidden="false" tabindex="-1" role="application" aria-label="variable output A = 2×2
1 2
2 1
" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div></div></div></div><div class="inlineWrapper outputs"><div class = 'S11'><span style="white-space: pre"><span >size(A)</span></span></div><div class = 'S8'><div class="inlineElement eoOutputWrapper disableDefaultGestureHandling embeddedOutputsVariableMatrixElement" uid="59DEC8C6" prevent-scroll="true" data-testid="output_2" data-width="1014" tabindex="-1" style="width: 1044px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="matrixElement veSpecifier saveLoad eoOutputContent" role="article" aria-roledescription="Use Browse Mode to explore " aria-description="variable output " style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 1014px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">ans = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: italic; color: rgb(97, 97, 97); font-size: 12px;">1×2</span></div></div><div class="valueContainer" data-layout="{"columnWidth":40,"totalColumns":2,"totalRows":1,"charsPerColumn":6}" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="variableValue" style="width: 82px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"> 2 2
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><mw-icon icon-id="meatballMenuUI" icon-width="16" icon-height="16" icon-config="{}" svg-path="" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></mw-icon></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><mw-icon icon-id="kebabMenuUI" icon-width="16" icon-height="16" icon-config="{}" svg-path="" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></mw-icon></div></div></div><div class="outputLayer selectedOutputDecorationLayer doNotExport" aria-hidden="true" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer activeOutputDecorationLayer doNotExport" aria-hidden="true" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer scrollableOutputDecorationLayer doNotExport" aria-hidden="true" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer navigationFocusLayer doNotExport" aria-hidden="false" tabindex="-1" role="application" aria-label="variable output ans = 1×2
2 2
" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div></div></div></div><div class="inlineWrapper outputs"><div class = 'S11'><span style="white-space: pre"><span >A*A</span></span></div><div class = 'S8'><div class="inlineElement eoOutputWrapper disableDefaultGestureHandling embeddedOutputsVariableMatrixElement" uid="CE19CDEE" prevent-scroll="true" data-testid="output_3" data-width="1014" tabindex="-1" style="width: 1044px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="matrixElement veSpecifier saveLoad eoOutputContent" role="article" aria-roledescription="Use Browse Mode to explore " aria-description="variable output " style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 1014px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">ans = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: italic; color: rgb(97, 97, 97); font-size: 12px;">2×2</span></div></div><div class="valueContainer" data-layout="{"columnWidth":40,"totalColumns":2,"totalRows":2,"charsPerColumn":6}" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="variableValue" style="width: 82px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"> 5 4
4 5
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><mw-icon icon-id="meatballMenuUI" icon-width="16" icon-height="16" icon-config="{}" svg-path="" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></mw-icon></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><mw-icon icon-id="kebabMenuUI" icon-width="16" icon-height="16" icon-config="{}" svg-path="" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></mw-icon></div></div></div><div class="outputLayer selectedOutputDecorationLayer doNotExport" aria-hidden="true" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer activeOutputDecorationLayer doNotExport" aria-hidden="true" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer scrollableOutputDecorationLayer doNotExport" aria-hidden="true" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer navigationFocusLayer doNotExport" aria-hidden="false" tabindex="-1" role="application" aria-label="variable output ans = 2×2
5 4
4 5
" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div></div></div></div><div class="inlineWrapper outputs"><div class = 'S11'><span style="white-space: pre"><span >A^2</span></span></div><div class = 'S8'><div class="inlineElement eoOutputWrapper disableDefaultGestureHandling embeddedOutputsVariableMatrixElement" uid="761D41D9" prevent-scroll="true" data-testid="output_4" data-width="1014" tabindex="-1" style="width: 1044px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="matrixElement veSpecifier saveLoad eoOutputContent" role="article" aria-roledescription="Use Browse Mode to explore " aria-description="variable output " style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 1014px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">ans = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: italic; color: rgb(97, 97, 97); font-size: 12px;">2×2</span></div></div><div class="valueContainer" data-layout="{"columnWidth":40,"totalColumns":2,"totalRows":2,"charsPerColumn":6}" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="variableValue" style="width: 82px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"> 5 4
4 5
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><mw-icon icon-id="meatballMenuUI" icon-width="16" icon-height="16" icon-config="{}" svg-path="" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></mw-icon></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><mw-icon icon-id="kebabMenuUI" icon-width="16" icon-height="16" icon-config="{}" svg-path="" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></mw-icon></div></div></div><div class="outputLayer selectedOutputDecorationLayer doNotExport" aria-hidden="true" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer activeOutputDecorationLayer doNotExport" aria-hidden="true" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer scrollableOutputDecorationLayer doNotExport" aria-hidden="true" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer navigationFocusLayer doNotExport" aria-hidden="false" tabindex="-1" role="application" aria-label="variable output ans = 2×2
5 4
4 5
" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div></div></div></div></div><h3 class = 'S6'><span>Modo texto: insertando una imagen</span></h3><div class = 'S2'><img class = "imageNode" src = "" width = "824" height = "276" alt = "" style = "vertical-align: baseline; width: 824px; height: 276px;"></img></div><h3 class = 'S6'><span>Modo texto: insertando una ecuación</span></h3><div class = 'S2'><span>a) Tipear </span><span style=' font-family: monospace;'>$\delta$ </span><span>genera </span><span style="font-family: STIXGeneral-webfont, serif; font-style: italic; font-weight: 400; color: rgb(33, 33, 33);">δ</span></div><div class = 'S2'><span>b) Tipear </span><span style=' font-family: monospace;'>$f(t)= \cos(\pi t)$</span><span> genera </span><span texencoding="f(t)=\cos(\pi t)" style="vertical-align:-5px"><img src="" width="89.5" height="18" /></span></div><div class = 'S2'><span>c) Tipear</span></div><div class = 'S2'><span>$</span></div><div class = 'S2'><span>\left[</span></div><div class = 'S2'><span>\begin{array}{ccc}</span></div><div class = 'S2'><span> 1 & 2 & 3 \\</span></div><div class = 'S2'><span> 1 & 2 & 3 </span></div><div class = 'S2'><span>\end{array}</span></div><div class = 'S2'><span>\right]</span></div><div class = 'S2'><span>$ </span></div><div class = 'S2'><span>genera </span></div><div class = 'S2'><span texencoding="\left[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}
\right]" style="vertical-align:-15px"><img src="" width="65" height="42" /></span></div><div class = 'S2'><span>Averiguar sobre herramientas para LaTeX</span></div><ul class = 'S3'><li class = 'S4'><span>Overleaf: </span><a href = "https://www.overleaf.com/"><span>https://www.overleaf.com/</span></a><span> </span></li><li class = 'S4'><span>mathpix: </span><a href = "https://mathpix.com/"><span>https://mathpix.com/</span></a><span> </span></li><li class = 'S4'><span>chatGPT u otras IA's</span></li></ul><h2 class = 'S5'><span>Practicando MATLAB</span></h2><h3 class = 'S6'><span>Creación de funciones</span></h3><ul class = 'S3'><li class = 'S4'><span>Ver el script </span><span style=' font-family: monospace;'>compute_square.m</span><span> en la misma carpeta de trabajo</span></li></ul><div class="CodeBlock"><div class="inlineWrapper outputs"><div class = 'S7'><span style="white-space: pre"><span >A=10</span></span></div><div class = 'S8'><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>A = 10</div></div></div><div class="inlineWrapper outputs"><div class = 'S11'><span style="white-space: pre"><span >A^2</span></span></div><div class = 'S8'><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>ans = 100</div></div></div><div class="inlineWrapper outputs"><div class = 'S11'><span style="white-space: pre"><span >compute_square(A)</span></span></div><div class = 'S8'><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>ans = 100</div></div></div></div><ul class = 'S3'><li class = 'S4'><span>Ver la función de usuario </span><span style=' font-family: monospace;'>error_rel</span><span> en el script Sesion1</span><span style=' font-family: monospace;'>_matlab.mlx</span></li></ul><div class="CodeBlock"><div class="inlineWrapper outputs"><div class = 'S7'><span style="white-space: pre"><span >A=1000 </span><span style="color: rgb(0, 128, 19);">% valor exacto</span></span></div><div class = 'S8'><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>A = 1000</div></div></div><div class="inlineWrapper outputs"><div class = 'S11'><span style="white-space: pre"><span >a=1000.5 </span><span style="color: rgb(0, 128, 19);">% valor aproximado</span></span></div><div class = 'S8'><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>a = 1.0005e+03</div></div></div><div class="inlineWrapper outputs"><div class = 'S11'><span style="white-space: pre"><span >error_rel(A,a)</span></span></div><div class = 'S8'><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>ans = 5.0000e-04</div></div></div><div class="inlineWrapper outputs"><div class = 'S11'><span style="white-space: pre"><span >error_relativo = error_rel(A,a)</span></span></div><div class = 'S8'><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>error_relativo = 5.0000e-04</div></div></div></div><h3 class = 'S6'><span>IA de MATLAB</span></h3><ul class = 'S3'><li class = 'S4'><a href = "https://la.mathworks.com/matlabcentral/playground/new"><span>https://la.mathworks.com/matlabcentral/playground/new</span></a><span> </span></li></ul><h3 class = 'S12'><span>Ejercicios:</span></h3><div class = 'S2'><span style=' font-weight: bold;'>Ejercicio 1</span><span>: Encuentre una expresión </span><span style=' font-style: italic;'>corta</span><span> en MATLAB para construir la matriz</span></div><div class = 'S2'><span texencoding="B = \left[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
9 & 7 & 5 & 3 & 1 & -1 & -3 \\
4 & 8 & 16 & 32 & 64 & 128 & 256
\end{array} \right]" style="vertical-align:-26px"><img src="" width="222.5" height="63" /></span></div><div class = 'S2'><span></span></div><div class = 'S2'><span style=' font-weight: bold;'>Ejercicio 2</span><span>: Dé una expresión en MATLAB que use solamente una multiplicación de matrices con </span><span style="font-family: STIXGeneral-webfont, serif; font-style: italic; font-weight: 400; color: rgb(33, 33, 33);">B</span><span> para obtener</span></div><div class = 'S2'><span>a) la suma de las columnas 5 y 7 de </span><span style="font-family: STIXGeneral-webfont, serif; font-style: italic; font-weight: 400; color: rgb(33, 33, 33);">B</span></div><div class = 'S2'><span>b) la última fila de </span><span style="font-family: STIXGeneral-webfont, serif; font-style: italic; font-weight: 400; color: rgb(33, 33, 33);">B</span></div><div class = 'S2'><span>c) una versión de </span><span style="font-family: STIXGeneral-webfont, serif; font-style: italic; font-weight: 400; color: rgb(33, 33, 33);">B</span><span> con las filas 2 y 3 intercambiadas</span></div><div class = 'S2'><span></span></div><div class = 'S2'><span style=' font-weight: bold;'>Ejercicio 3</span><span>: Dé una expresión en MATLAB que multiplique dos vectores para obtener</span></div><div class = 'S2'><span>a) la matriz </span><span texencoding="\left[
\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5
\end{array}
\right]" style="vertical-align:-26px"><img src="" width="102.5" height="63" /></span></div><div class = 'S2'><span>b) la matriz </span><span texencoding="\left[
\begin{array}{ccc}
0 & 0 & 0 \\
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3 \\
4 & 4 & 4
\end{array}
\right]" style="vertical-align:-48px"><img src="" width="63.5" height="107" /></span></div><div class = 'S2'><span></span></div><div class = 'S2'><span style=' font-weight: bold;'>Ejercicio 4</span><span>: Modifique la diapositiva 30 para producir tonos de frecuencia descendente en su lugar.</span></div><div class = 'S2'><span></span></div><div class = 'S2'><span style=' font-weight: bold;'>Ejercicio 5</span><span>:</span></div><div class = 'S2'><span>a) Escriba la función </span><span texencoding="g(t)" style="vertical-align:-5px"><img src="" width="25" height="18" /></span><span> que tiene la forma de una onda sinusoidal que aumenta linealmente en frecuencia desde 0 Hz en </span><span texencoding="t=0" style="vertical-align:-5px"><img src="" width="33.5" height="18" /></span><span> s hasta 5 Hz en </span><span texencoding="t=10" style="vertical-align:-5px"><img src="" width="41" height="18" /></span><span> s.</span></div><div class = 'S2'><span>b) Trace el gráfico de esta función usando el comando </span><span style=' font-family: monospace;'>plot</span><span> de MATLAB.</span></div><div class = 'S2'><span></span></div><div class = 'S2'><span>Funciones de usuario:</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S13'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >delta=error_rel(valor_exacto,valor_aprox)</span></span></div></div><div class="inlineWrapper"><div class = 'S14'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% Doc de la función (ejercicio)</span></span></div></div><div class="inlineWrapper"><div class = 'S14'> </div></div><div class="inlineWrapper"><div class = 'S14'><span style="white-space: pre"><span style="color: rgb(0, 128, 19);">% el símbolo ; es para que no imprima en consola</span></span></div></div><div class="inlineWrapper"><div class = 'S14'><span style="white-space: pre"><span >delta = abs(valor_exacto-valor_aprox) / abs(valor_exacto);</span></span></div></div><div class="inlineWrapper"><div class = 'S14'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S14'> </div></div><div class="inlineWrapper"><div class = 'S14'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >output_arg =compute_square( input_arg )</span></span></div></div><div class="inlineWrapper"><div class = 'S14'><span style="white-space: pre"><span >output_arg = input_arg .^ 2;</span></span></div></div><div class="inlineWrapper"><div class = 'S15'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div>
<br>
<!--
##### SOURCE BEGIN #####
%% Sesion 1: Introducción a MATLAB
%% Trabajando con MATLAB
% En la práctica uno debe conocer
%%
% * Entorno de trabajo: ventana de comandos, workspace, barras de herramientas
% * Editores de scripts: scripts, funciones, livescripts
% * Fundamentos básicos
% * IA de MATLAB
% * Atajos de teclado
%% Livescripts en MATLAB
% Características:
%%
% * Extensión .mlx (por ejemplo, Sesion|1_matlab.mlx|)
% * Integra texto (Markdown) y comandos de MATLAB
% * Organización por secciones
% * Manejo de funciones de usuario en el mismo documento
% Atajos de teclado
%%
% * |Ctrl +|: Zoom
% * |Ctrl + N|: Nuevo script
% * |Ctrl + S|: Guardar script
% * |Ctrl + Enter|: Ejecutar una sección
% Modo MATLAB
a=1000
A=[1 2;
2 1]
size(A)
A*A
A^2
% Modo texto: insertando una imagen
%
% Modo texto: insertando una ecuación
% a) Tipear |$\delta$| genera $\delta$
%
% b) Tipear |$f(t)= \cos(\pi t)$| genera $f(t)=\cos(\pi t)$
%
% c) Tipear
%
% $
%
% \left[
%
% \begin{array}{ccc}
%
% 1 & 2 & 3 \\
%
% 1 & 2 & 3
%
% \end{array}
%
% \right]
%
% $
%
% genera
%
% $$\left[\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array}\right]$$
%
% Averiguar sobre herramientas para LaTeX
%%
% * Overleaf: <https://www.overleaf.com/ https://www.overleaf.com/>
% * mathpix: <https://mathpix.com/ https://mathpix.com/>
% * chatGPT u otras IA's
%% Practicando MATLAB
% Creación de funciones
%%
% * Ver el script |compute_square.m| en la misma carpeta de trabajo
A=10
A^2
compute_square(A)
%%
% * Ver la función de usuario |error_rel| en el script Sesion1|_matlab.mlx|
A=1000 % valor exacto
a=1000.5 % valor aproximado
error_rel(A,a)
error_relativo = error_rel(A,a)
% IA de MATLAB
%%
% * <https://la.mathworks.com/matlabcentral/playground/new https://la.mathworks.com/matlabcentral/playground/new>
% Ejercicios:
% *Ejercicio 1*: Encuentre una expresión _corta_ en MATLAB para construir la
% matriz
%
% $$B = \left[\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\9 & 7 & 5 &
% 3 & 1 & -1 & -3 \\4 & 8 & 16 & 32 & 64 & 128 & 256\end{array} \right]$$
%
%
%
% *Ejercicio 2*: Dé una expresión en MATLAB que use solamente una multiplicación
% de matrices con $B$ para obtener
%
% a) la suma de las columnas 5 y 7 de $B$
%
% b) la última fila de $B$
%
% c) una versión de $B$ con las filas 2 y 3 intercambiadas
%
%
%
% *Ejercicio 3*: Dé una expresión en MATLAB que multiplique dos vectores para
% obtener
%
% a) la matriz $\left[\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 1 & 2
% & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5\end{array}\right]$
%
% b) la matriz $\left[\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 1 & 1 \\
% 2 & 2 & 2 \\ 3 & 3 & 3 \\ 4 & 4 & 4\end{array}\right]$
%
%
%
% *Ejercicio 4*: Modifique la diapositiva 30 para producir tonos de frecuencia
% descendente en su lugar.
%
%
%
% *Ejercicio 5*:
%
% a) Escriba la función $g(t)$ que tiene la forma de una onda sinusoidal que
% aumenta linealmente en frecuencia desde 0 Hz en $t=0$ s hasta 5 Hz en $t=10$
% s.
%
% b) Trace el gráfico de esta función usando el comando |plot| de MATLAB.
%
%
%%
% Funciones de usuario:
function delta=error_rel(valor_exacto,valor_aprox)
% Doc de la función (ejercicio)
% el símbolo ; es para que no imprima en consola
delta = abs(valor_exacto-valor_aprox) / abs(valor_exacto);
end
function output_arg =compute_square( input_arg )
output_arg = input_arg .^ 2;
end
##### SOURCE END #####
-->
</div></body></html>