-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPyF90_comparison.py
executable file
·80 lines (70 loc) · 2.77 KB
/
PyF90_comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import numpy as np
from tensorflow.keras.models import load_model, Model
import tensorflow as tf
#program to test Wnet using the same approach as in the fortran module.
#Written by Donifan Barahona
means= [243.9, 0.6, 6.3, 0.013, 0.0002, 5.04, 21.8, 0.002, 9.75e-7, 7.87e-6, 0.6, 5.04, 21.8, 0.002 ] #hardcoded from G5NR #hardcoded from G5NR based on 100 time steps
stds =[30.3, 0.42, 16.1, 7.9, 0.05, 20.6, 20.8, 0.0036, 7.09e-6, 2.7e-5, 0.42, 20.6, 20.8, 0.0036]
# Fixed seed for reproducibility
np.random.seed(12345)
tf.random.set_seed(12345)
Ns = 1
NF=14
# ---------------------------
# Generate Perturbed Inputs (Range [0.7, 1.3])
# ---------------------------
def generate_perturbed_inputs(Ns):
"""
Generate Ns samples by perturbing the mean to be in the range [0.6, 1.4].
"""
perturbed_inputs = []
for i in range(Ns):
rand = np.random.rand(NF).astype(np.float32) # Uniform [0,1]
perturbation = 0.6 + (1.4 - 0.6) * rand
print (perturbation)
if False: #reproduces exactly the first values from F90
perturbation = np.array([1.39688196505185,
0.955320040044469,
0.750406903766369,
1.35267724021224,
0.664087335694313,
0.865826942117554,
0.634150574590451,
0.829104645305264,
0.650579362874499,
0.922793588897890,
0.958937425962500,
0.787562824014034,
1.36635846660494,
0.708843879612037])
print (perturbation)
perturbed_mean = perturbation*means # Directly set to the range
perturbed_inputs.append(perturbed_mean)
return np.array(perturbed_inputs)
# Standardize inputs
def standardize_inputs(inputs):
"""
Standardize inputs using prescribed mean and stddev.
"""
return (inputs - means) / stds
# Load the Keras model
path = 'Wnet.h5'
model = load_model(path)
model.summary()
# Generate perturbed input samples
inputs = generate_perturbed_inputs(Ns)
standardized_inputs = standardize_inputs(inputs)
# ---------------------------
# Run Model Predictions
# ---------------------------
outputs = model.predict(standardized_inputs)
# ---------------------------
# Display Results
# ---------------------------
print("Running Wnet with Ns =", Ns)
print("Perturbed Inputs (Range 0.7–1.3):")
for i in range(Ns):
print(f"Sample {i + 1} Input: {inputs[i]}")
print("\nModel Outputs:")
for i, output in enumerate(outputs):
print(f"Sample {i + 1}: {output[0]}")