-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBoxPlots.py
306 lines (236 loc) · 10.5 KB
/
BoxPlots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#######################################################################
# NASA GSFC Global Modeling and Assimilation Office (GMAO), Code 610.1
# code developed by Donifan Barahona and Katherine Breen
# last edited: 06.2023
# purpose: To analyze the W data (box plots)
######################################################################
########################################################
# IMPORT PACKAGES
########################################################
import numpy as np
import sys
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.ticker import FormatStrFormatter
import xarray as xr
from keras.models import load_model
from xhistogram.xarray import histogram
import matplotlib.dates as mdates
import matplotlib.units as munits
from matplotlib.offsetbox import AnchoredText
from scipy.stats import ks_2samp
from xclim.analog import kolmogorov_smirnov
import seaborn as sns
########################################################
# FUNCTIONS
########################################################
def standardize(ds):
i = 0
m= [243.9, 0.6, 6.3, 0.013, 0.0002, 5.04, 21.8, 0.002, 9.75e-7, 7.87e-6] #hardcoded from G5NR
s = [30.3, 0.42, 16.1, 7.9, 0.05, 20.6, 20.8, 0.0036, 7.09e-6, 2.7e-5]
for v in ds.data_vars:
ds[v] = (ds[v] - m[i])/s[i]
i = i+1
return ds
def outlier(x):
return abs((x - x.mean(dim='time', skipna=True)) / x.std(dim='time', skipna=True))
def get_data(site= '', chunk_size = 512*72, test = False):
path_asr = "" # path to obs data
path_merra = "" # path to reanalysis data
asrdata = path_asr + site + ".nc"
dat_obs = xr.open_mfdataset(asrdata, parallel=True)
nam = "Wstd_" + site
dat_obs = dat_obs.where(dat_obs != -9999.)
dat_obs = dat_obs.where(dat_obs < 15.)
if site == 'manus':
dat_obs = dat_obs.where((dat_obs["time.year"] < 2005) | (dat_obs["time.year"] > 2007), drop=True)
if site == 'twp':
dat_obs = dat_obs.where((dat_obs["time.year"] < 2014), drop=True)
if site == 'mao':
d1 = dat_obs.sel(time=slice('2014-02-01', '2015-01-10'))
d2 = dat_obs.sel(time=slice('2015-04-01', '2016-02-01'))
dat_obs = xr.concat([d1, d2], dim ='time')
if site == 'ena':
dat_obs = dat_obs.where((dat_obs["time.year"] < 2017) | (dat_obs["time.year"] >= 2018), drop=True)
dat_obs = dat_obs.where(dat_obs != -9999.)
kstd = 2.0 # defines outliers beyond 2stdev
dat_aux = dat_obs.where(dat_obs > 0.01)
dat_std = dat_aux.groupby('time.month').map(outlier) # returns abs(anomaly/std)
dat_obs = dat_obs.where(dat_std < kstd) # we are filling up with zeros anyway
dat_obs = dat_obs.dropna('time',how='all',thresh=2) # drop timesteps where all values are nans, keep only timesteps with at least 2 non-nan values (nec for interp)
#==========MERRA
Minp = path_merra + site + ".nc"
dat_merra = xr.open_mfdataset(Minp, parallel=True, chunks={"time": 2560})#.sel(lev=slice(1,72))
# Merra is 3-hourly we have to resample to 10min-half an hour to get enough data
dat_merra = dat_merra.resample(time="1min").interpolate("linear")
# align time steps with obs
dat_merra, dat_obs = xr.align(dat_merra, dat_obs, exclude = {'height', 'lev'})
dat = dat_merra[['T', 'AIRD', 'U', 'V', 'W', 'KM', 'RI', 'QV', 'QI', 'QL']]
dat = dat.fillna(0)
dat_obs = dat_obs.fillna(0)
## get the last 15% of the data for testing
tim = dat['time']
tx = int(0.85*len(tim.values))
test_dates = tim[tx:]
dat = dat.sel (time = test_dates)
dat_obs = dat_obs.sel (time = test_dates)
## Standardize
feat_in= xr.map_blocks(standardize, dat, template=dat)
Xall = feat_in
#========add_surface_vars======
levs = Xall.coords['lev'].values
nlev = len(levs)
all_vars = ['AIRD', 'KM', 'RI', 'QV']
for v in all_vars:
vv = Xall[v]
Xs = vv.sel(lev=[71]).squeeze() #level 1 above surface
Xsfc = Xs
v2 = v + "_sfc"
for l in range(nlev-1):
Xsfc = xr.concat([Xsfc, Xs], dim ='lev')
Xsfc = Xsfc.assign_coords(lev=levs)
Xall[v2] = Xsfc
Xall = Xall.unify_chunks()
Xall = Xall.to_array()
Xall = Xall.stack(s=('time', 'lev'))
Xall = Xall.rename({"variable":"ft"})
Xall = Xall.squeeze()
Xall = Xall.transpose()
yall = dat_obs["W_asr_std"]
yall = yall.stack(s=('time', 'height'))
return Xall.load(), yall.load()
def SWclean(SWpred, SWobs):
lowW = 0.01
maxW = 15.0
SWpred = SWpred.where(SWobs > lowW)
SWpred = SWpred.where(SWobs > lowW)
SWpred = SWpred.where(SWpred > lowW)
SWpred = SWpred.where(SWpred < maxW)
return SWpred
########################################################
# PLOT
########################################################
if __name__ == '__main__':
print('I am___', sys.argv[0])
folder = "./"
#===========load models
test = True
pth = "" # path to Wnet model *.h5 file
mod_name = "" # Wnet model name
model_best=load_model(pth + mod_name + '.h5' , compile=False)
print('\n------------------------------------------------------')
print('Wnet Model Summary:')
print('------------------------------------------------------')
model_best.summary()
pth = "" # path to prior model *.h5 file
mod_name = "" # prior model name
prior=load_model(pth , compile=False)
print('\n------------------------------------------------------')
print('Prior Model Summary:')
print('------------------------------------------------------')
prior.summary()
pth = "" # path to obs only model *.h5 file
mod_name = "" # obs only model name
data_only=load_model(pth + mod_name + '.h5' , compile=False)
print('\n------------------------------------------------------')
print('Data only Model Summary:')
print('------------------------------------------------------')
data_only.summary()
pth = "" # path to transfer model *.h5 file
mod_name = "" # transfer model name
trans=load_model(pth + mod_name + '.h5' , compile=False)
print('\n------------------------------------------------------')
print('Transfer Model Summary:')
print('------------------------------------------------------')
trans.summary()
pth = "" # path to EMD model *.h5 file
mod_name = "" # EMD model name
emd=load_model(pth + mod_name + '.h5' , compile=False)
print('\n------------------------------------------------------')
print('EMD model Summary:')
print('------------------------------------------------------')
emd.summary()
n=0
#plotting options
plt.switch_backend('agg')
fig, axes = plt.subplots(nrows=4, ncols=3, constrained_layout=True)
axes = axes.flatten()
txt = "{:.2f}"
yearsFmt = mdates.DateFormatter('%Y-%m')
axn = 0
SMALL_SIZE = 9
MEDIUM_SIZE = 12
BIGGER_SIZE = 14
mk_space = 6
plt.rc('font', size=SMALL_SIZE) # controls default text sizes
plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title
plt.rc('axes', labelsize=SMALL_SIZE) # fontsize of the x and y labels
plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize
plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title
axn = 0
sns.set_style("whitegrid")
for site in ['sgp_pbl' , 'sgp_cirrus', 'manus', 'lei', 'lim', 'mao', 'nsa' , 'asi', 'twp', 'cor', 'pgh', 'ena']:
s = site
if site in [ 'nsa' , 'asi', 'twp', 'cor', 'pgh', 'ena']:
s = s + ' (pbl)'
if site in [ 'manus', 'lei', 'lim']:
s = s + ' (cirrus)'
if site == 'mao':
s = 'mao (convective)'
if site == 'sgp_pbl':
s = 'sgp (pbl)'
if site == 'sgp_cirrus':
s = 'sgp (cirrus)'
##################################################################
# GET DATA
##################################################################
X, SWobs = get_data(site = site, test = False)
#===============================
# predict ====wnet=========
SW = model_best.predict(X, batch_size = 32768)
SWpred = SWobs.copy(data=SW[:,0])
SWpred = SWclean(SWpred, SWobs)
# predict ======wnet_prior=======
SW = prior.predict(X, batch_size = 32768)
SWprior = SWobs.copy(data=SW[:,0])
SWprior = SWclean(SWprior, SWobs)
# predict ======data_only=======
SW = data_only.predict(X, batch_size = 32768)
SWdo = SWobs.copy(data=SW[:,0])
SWdo = SWclean(SWdo, SWobs)
# predict ======transfer learning=======
SW = trans.predict(X, batch_size = 32768)
SWtr = SWobs.copy(data=SW[:,0])
SWtr = SWclean(SWtr, SWobs)
# predict ======emd=======
SW = emd.predict(X, batch_size = 32768)
SWemd = SWobs.copy(data=SW[:,0])
SWemd = SWclean(SWemd, SWobs)
SWobs = SWclean(SWobs, SWobs)
print('SWpred', SWpred)
############### ALL data statistics #################
SWdat = SWobs
SWdat = SWdat.to_dataset()
SWdat = SWdat.rename({'W_asr_std':'Obs'})
SWdat['Wnet'] = SWpred
SWdat['Wpr'] = SWprior
SWdat['Oo'] = SWdo
SWdat['Tr'] = SWtr
SWdat['EMD'] = SWemd
print('data', SWdat)
ydat = np.linspace(-100, 100, 100)
SWdat = SWdat.to_dataframe()
print('dataframe', SWdat)
sns.boxplot(data= SWdat, ax=axes[axn],
showfliers = False)
axes[axn].set_ylabel(r'$\sigma_w ~\rm{m ~s}^{-1}$')
axes[axn].set_title(s)
axes[axn].locator_params(axis='y', nbins=5)
axes[axn].yaxis.grid(True)
axes[axn].yaxis.set_major_formatter(FormatStrFormatter('%.1f'))
axn = axn+1
tit = mod_name + '_boxplot_last15percent.png'
fig.set_size_inches(9.5, 5.5)
fig.savefig(tit)