A pythonic client for DataStax Astra DB.
This README targets AstraPy version 2.0+. Click here for v1 and here for the v0 API (which you should not really be using by now).
Install with pip install astrapy
.
Get the API Endpoint and the Token to your Astra DB instance at astra.datastax.com.
Try the following code after replacing the connection parameters:
from astrapy import DataAPIClient
from astrapy.constants import VectorMetric
from astrapy.ids import UUID
from astrapy.info import CollectionDefinition
ASTRA_DB_APPLICATION_TOKEN = "AstraCS:..."
ASTRA_DB_API_ENDPOINT = "https://01234567-....apps.astra.datastax.com"
# Connect and create the Database object
my_client = DataAPIClient()
my_database = my_client.get_database(
ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
)
# Create a vector collection
my_collection = my_database.create_collection(
"dreams_collection",
definition=(
CollectionDefinition.builder()
.set_vector_dimension(3)
.set_vector_metric(VectorMetric.COSINE)
.build()
)
)
# Populate the collection with some documents
my_collection.insert_many(
[
{
"_id": UUID("018e65c9-e33d-749b-9386-e848739582f0"),
"summary": "Riding the waves",
"tags": ["sport"],
"$vector": [0, 0.2, 1],
},
{
"summary": "Friendly aliens in town",
"tags": ["scifi"],
"$vector": [-0.3, 0, 0.8],
},
{
"summary": "Meeting Beethoven at the dentist",
"$vector": [0.2, 0.6, 0],
},
],
)
my_collection.update_one(
{"tags": "sport"},
{"$set": {"summary": "Surfers' paradise"}},
)
# Run a vector search
cursor = my_collection.find(
{},
sort={"$vector": [0, 0.2, 0.4]},
limit=2,
include_similarity=True,
)
for result in cursor:
print(f"{result['summary']}: {result['$similarity']}")
# This would print:
# Surfers' paradise: 0.98238194
# Friendly aliens in town: 0.91873914
# Resource cleanup
my_collection.drop()
Next steps:
- More info and usage patterns are given in the docstrings of classes and methods
- Data API reference
- AstraPy reference
- Package on PyPI
AstraPy works with the "vectorize" feature of the Data API. This means that one can define server-side computation for vector embeddings and use text strings in place of a document vector, both in writing and in reading. The transformation of said text into an embedding is handled by the Data API, using a provider and model you specify.
my_collection = database.create_collection(
"my_vectorize_collection",
definition=(
CollectionDefinition.builder()
.set_vector_service(
provider="example_vendor",
model_name="embedding_model_name",
authentication={"providerKey": "<STORED_API_KEY_NAME>"} # if needed
)
.build()
)
)
my_collection.insert_one({"$vectorize": "text to make into embedding"})
documents = my_collection.find(sort={"$vectorize": "vector search query text"})
See the Data API reference for more on this topic.
AstraPy supports the "findAndRerank" Data API command, which performs a hybrid search by combining results from a lexical search and a vector-based search in a single operation.
r_results = my_collection.find_and_rerank(
sort={"$hybrid": "query text"},
limit=10,
include_scores=True,
)
for r_result in r_results:
print(r_result.document, r_results.scores)
This command will execute if the collection was created with the required settings (they are enabled by default).
See the Data API reference, and the docstring for the find_and_rerank
method,
for more on this topic.
The example above uses a collection, where schemaless "documents" can be stored and retrieved. Here is an equivalent code that uses Tables, i.e. uniform, structured data where each row has the same columns, which are of a specific type:
from astrapy import DataAPIClient
from astrapy.constants import VectorMetric
from astrapy.data_types import DataAPIVector
from astrapy.info import (
CreateTableDefinition,
ColumnType,
TableVectorIndexDefinition,
TableVectorIndexOptions,
)
ASTRA_DB_APPLICATION_TOKEN = "AstraCS:..."
ASTRA_DB_API_ENDPOINT = "https://01234567-....apps.astra.datastax.com"
# Connect and create the Database object
my_client = DataAPIClient()
my_database = my_client.get_database(
ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
)
# Create a table and a vector index on it
table_definition = (
CreateTableDefinition.builder()
.add_column("dream_id", ColumnType.INT)
.add_column("summary", ColumnType.TEXT)
.add_set_column("tags", ColumnType.TEXT)
.add_vector_column("dream_vector", dimension=3)
.add_partition_by(["dream_id"])
.build()
)
index_options=TableVectorIndexOptions(
metric=VectorMetric.COSINE,
)
my_table = my_database.create_table("dreams_table", definition=table_definition, if_not_exists=True)
my_table.create_vector_index("dreams_table_vec_idx", column="dream_vector", options=index_options, if_not_exists=True)
# Populate the table with some rows
my_table.insert_many(
[
{
"dream_id": 103,
"summary": "Riding the waves",
"tags": ["sport"],
"dream_vector": DataAPIVector([0, 0.2, 1]),
},
{
"dream_id": 119,
"summary": "Friendly aliens in town",
"tags": ["scifi"],
"dream_vector": DataAPIVector([-0.3, 0, 0.8]),
},
{
"dream_id": 37,
"summary": "Meeting Beethoven at the dentist",
"dream_vector": DataAPIVector([0.2, 0.6, 0]),
},
],
)
my_table.update_one(
{"dream_id": 103},
{"$set": {"summary": "Surfers' paradise"}},
)
# Run a vector search
cursor = my_table.find(
{},
sort={"dream_vector": DataAPIVector([0, 0.2, 0.4])},
limit=2,
include_similarity=True,
)
for result in cursor:
print(f"{result['summary']}: {result['$similarity']}")
# This would print:
# Surfers' paradise: 0.98238194
# Friendly aliens in town: 0.91873914
# Resource cleanup
my_table.drop()
For more on Tables, consult the Data API documentation about Tables. Note that most features of Collections, with due modifications, hold for Tables as well (e.g. "vectorize", i.e. server-side embeddings).
When working with Tables, map
columns with key of a type other than text
must be expressed as association lists,
i.e. nested lists of lists: [[key1, value1], [key2, value2], ...]
, in payloads.
By default, Table
objects in AstraPy will use the association-list representation
only for maps wrapped by a DataAPIMap
, and leave regular Python dict
objects
unchanged in payloads: in practice the following row would be sent to the API as shown:
from astrapy.data_types import DataAPIMap
row_to_insert = {
"map_1": {"k": "v"},
"map_2": DataAPIMap({"k1": "v1", "k2": "v2"}),
}
# Will be serialized as JSON like this:
# {
# "map_1": {"k": "v"},
# "map_2": [["k1", "v1"], ["k2", "v2"]]
# }
This behaviour is controlled by the API Option serdes_options.encode_maps_as_lists_in_tables
,
which defaults to MapEncodingMode.DATAAPIMAPS
. Other options are:
MapEncodingMode.ALWAYS
to convert also regular Pythondict
values into lists of pairs;MapEncodingMode.NEVER
to never apply such conversion.
The following code demonstrates getting a Table
object with the desired setting:
from astrapy.api_options import APIOptions, SerdesOptions
from astrapy.constants import MapEncodingMode
my_options = APIOptions(serdes_options=SerdesOptions(
encode_maps_as_lists_in_tables=MapEncodingMode.ALWAYS # or even just "ALWAYS"
))
my_table = my_database.get_table("my_table", spawn_api_options=my_options)
See the section about API Options, and the docstring, for more details.
Caution: if one plans to use regular Python dict
objects to express user-defined types (UDTs),
setting this option to ALWAYS would interfere with the format expected by the API for UDTs.
See the section on UDTs for more details.
The Data API allows creation of "user-defined types" (UDTs), composite data types that can be subsequently used as table column types.
from astrapy.info import (
ColumnType,
CreateTableDefinition,
CreateTypeDefinition,
TableScalarColumnTypeDescriptor,
)
player_udt_def = CreateTypeDefinition(
fields={
"name": TableScalarColumnTypeDescriptor(ColumnType.TEXT),
"age": TableScalarColumnTypeDescriptor(ColumnType.INT),
},
)
my_database.create_type("player_udt", definition=player_udt_def)
# Create a table and a vector index on it
table_definition = (
CreateTableDefinition.builder()
.add_column("match_id", ColumnType.TEXT)
.add_userdefinedtype_column("player1", "player_udt")
.add_userdefinedtype_column("player2", "player_udt")
.add_partition_by(["match_id"])
.build()
)
udt_table = my_database.create_table("matches", definition=table_definition)
To write data to UDT columns, the default settings (in part. the SerdesOptions
settings)
admit using plain Python dictionaries. When reading from a Table
, by default the
UDT will be returned in the form of an astrapy.data_types.DataAPIDictUDT
, a subclass
of dict
.
The default write behaviour can be changed through the
serdes_options.encode_maps_as_lists_in_tables
API Option,
described in the "Maps as association lists" section.
The default read behaviour can be changed by setting serdes_options.custom_datatypes_in_reading
to False, in which case UDT data will be returned as a regular dict
.
The following code demonstrates the default read and write behaviour, using the udt_table
just created:
from astrapy.data_types import DataAPIDictUDT
# both are valid ways to express a 'player_udt':
udt_table.insert_one({
"match_id": "x001",
"player1": {"name": "Anita", "age": 49},
"player2": DataAPIDictUDT({"name": "Pedro", "age": 50}),
})
# Conversely, use of DataAPIMap for UDTs is an error under the default serdes settings.
Note that if the map list-encoding is set to "ALWAYS", the above insertion
will fail because of "player1"
: usage of DataAPIDictUDT
is guaranteed to work
in all circumstances instead.
In many cases, one wants to 'bind' a certain UDT to a model class. AstraPy provides a way to "register" model classes both for the write and read paths, through the following serdes API Options:
serdes_options.serializer_by_class
: a map from classes (not class names; not class instances) to serializer functions. A serializer function accepts an instance of the model class and returns a correspondingdict
representation;serdes_options.deserializer_by_udt
: a map from UDT names to deserializer functions. A deserializer function accepts a dict representation, along with the UDT definition, and returns an instance of the model class.
The following example demonstrates this procedure, including ser/deserializers.
Suppose you have a dataclass
corresponding to player_udt
:
from dataclasses import dataclass
@dataclass
class Player:
name: str
age: int
The two required ser/des functions can be defined and configured for the API options in order to spawn a Table
object able to use Player
:
from typing import Any
from astrapy.api_options import APIOptions, SerdesOptions
from astrapy.info import CreateTypeDefinition
def player_serializer(pl: Player) -> dict[str, Any]:
# the logic in this function will depend on the model class being used:
return pl.__dict__
def player_deserializer(
pl_dict: dict[str, Any],
udt_def: CreateTypeDefinition | None,
) -> Player:
# the logic in this function will depend on the model class being used:
return Player(**pl_dict)
my_options = APIOptions(serdes_options=SerdesOptions(
serializer_by_class={Player: player_serializer},
deserializer_by_udt={"player_udt": player_deserializer},
))
# This statement does not create the table on DB, that is assumed to exist already:
my_model_capable_table = database.get_table("matches", spawn_api_options=my_options)
At this point, writes and reads can seamlessly use the Player
class:
my_model_capable_table.insert_one({
"match_id": "x001",
"player1": Player(name="Anita", age=49),
"player2": Player(name="Pedro", age=50),
})
the_match = my_model_capable_table.find_one({"match_id": "x001"})
# the_match["player1"] and the_match["player2"] are Player objects:
print(the_match["player1"])
# prints: Player(name='Anita', age=49)
print(the_match["player2"])
# prints: Player(name='Pedro', age=50)
Under the default serdes settings, the following rules apply and constitute the suggested approach:
- use DataAPIMap to write map columns;
- use DataAPIDictUDTs, or plain
dict
, to write UDTs; - expect DataAPIMap when reading map columns;
- expect DataAPIDictUDTs when reading UDTs;
- to use model classes, associate them for reads and writes correspondingly.
The following tables summarize the interplay between dict
, DataAPIMap
, DataAPIDictUDT
and the
serdes options for writes and reads in Tables:
Items in insertions vs. serdes_options.encode_maps_as_lists_in_tables
.
("D" = dict
in payload, "L" = list of pairs in payload.)
Item being written | NEVER | DATAAPIMAPS (default) | ALWAYS |
---|---|---|---|
DataAPIDictUDT | ok, D | ok, D | ok, D |
dict (for UDT) | ok, D | ok, D | NO (L: rejected) |
dict (for map, string keys) | ok, D | ok, D | ok, L |
dict (for map, nonstring keys) | NO [1] | NO [1] | ok, L |
MyClass , in serializer_by_class |
ok, D [2] | ok, D [2] | ok, D [2] |
MyClass , no registered serializer |
NO [3] | NO [3] | NO [3] |
Notes:
- The JSON serialization would silently convert the keys to string, leading to a type-mismatch API error upon insertion.
- In this case the
dict
is the result of the serializer function, of course. - An error "Object of type
<classname>
is not JSON serializable" is raised.
Items in reads vs. serdes_options.custom_datatypes_in_reading
.
("M" = DataAPIMap
found in row, "U" = DataAPIDictUDT
found in row, "D" = dict
found in row.)
Item being read | True (default) | False |
---|---|---|
map (as object, string keys) | ok, M | ok, D |
map (as list, string keys) | ok, M | ok, D |
map (as list, nonstring keys) | ok, M | ok, D [4] |
UDT, with entry in deserializer_by_udt |
ok [5] | ok [5] |
UDT, no registered deserializer | ok, U | ok, D |
Notes:
- Caution: the returned regular Python
dict
will have nonstring keys. - The class of the result is whatever the deserializer returns.
The main difference when targeting e.g. a Hyper-Converged Database (HCD)
installation is how the client is
initialized. Here is a short example showing just how to get to a Database
(what comes next is unchaged compared to using Astra DB).
from astrapy import DataAPIClient
from astrapy.constants import Environment
from astrapy.authentication import UsernamePasswordTokenProvider
# Build a token
tp = UsernamePasswordTokenProvider("username", "password")
# Initialize the client and get a "Database" object
client = DataAPIClient(environment=Environment.HCD)
database = client.get_database("http://localhost:8181", token=tp)
For more on this case, please consult the dedicated reference.
AstraPy's abstractions for working at the data and admin layers are structured as depicted by this diagram:
Here's a small admin-oriented example:
from astrapy import DataAPIClient
# this must have "Database Administrator" permissions:
ASTRA_DB_APPLICATION_TOKEN = "AstraCS:..."
my_client = DataAPIClient(ASTRA_DB_APPLICATION_TOKEN)
my_astra_admin = my_client.get_admin()
database_list = list(my_astra_admin.list_databases())
db_info = database_list[0].info
print(db_info.name, db_info.id, db_info.region)
my_database_admin = my_astra_admin.get_database_admin(db_info.id)
my_database_admin.list_keyspaces()
my_database_admin.create_keyspace("my_dreamspace")
The package comes with its own set of exceptions, arranged in this hierarchy:
For more information, and code examples, check out the docstrings and consult the API reference linked above.
You can configure many aspects of the interaction with the API by providing customized "API Options" objects when either spawning a client, copying objects, or spawning "children classes" (such as a Table from a Database).
For the details, please check the docstring for astrapy.api_options.APIOptions
and the other classes in that module. Here is a small example script to show a
practical starting point:
from astrapy import DataAPIClient
from astrapy.api_options import (
APIOptions,
SerdesOptions,
)
# Disable custom datatypes in all reads:
no_cdt_options = APIOptions(
serdes_options=SerdesOptions(
custom_datatypes_in_reading=False,
)
)
my_client = DataAPIClient(api_options=no_cdt_options)
# These spawned objects inherit that setting:
my_database = my_client.get_database(
"https://...",
token="my-token-1",
)
my_table = my_database.get_table("my_table")
Date and datetime objects, i.e. instances of the standard library
datetime.datetime
and datetime.date
classes, can be used
anywhere when sending documents and queries to the API.
By default, what you get back is an instance of astrapy.data_types.DataAPITimestamp
(which has a much wider range of expressable timestamps than Python's stdlib).
If you want to revert to using the standard library datetime.datetime
, you can do so
by turn on the APIOptions.SerdesOptions.custom_datatypes_in_reading
API Options setting for the
collection/table object (note that this setting affects the returned format for several other table data types).
If you choose to have timestamps returned as standard-library datetime.datetime
objects,
both for collections and tables, you may supply a specific timezone for these
(the default is UTC). You do so by providing an appropriate datetime.timezone
value
to the APIOptions.SerdesOptions.datetime_tz
API Options setting for the
collection/table object. You can also specify None
for a timezone, in which case
the resulting values will be timezone-unaware (or "naive") datetimes.
Naive datetimes (i.e. those without a timezone information attached)
are inherently ambiguous when it comes to translating them into a unambiguous timestamp.
For this reason, if you want to work with naive datetimes, and in particular you want
AstraPy to accept them for writes, you need to explicitly
turn on the APIOptions.SerdesOptions.accept_naive_datetimes
API Options setting for the
collection/table object, otherwise AstraPy will raise an error.
Remember that what effectively gets written to DB is always a (numeric) timestamp: for naive quantities, this timestamp value depends on the implied timezone used in the conversion, potentially leading to unexpected results e.g. if multiple applications are running with different locale settings.
The following diagram summarizes the behaviour of the write and read paths for datetime objects,
depending on the SerdesOptions
settings:
Here an example code snippet showing how to switch to having reads return regular datetime
objects
and have them set to one's desired timezone offset:
from datetime import timezone,timedelta
from astrapy import DataAPIClient
from astrapy.api_options import APIOptions, SerdesOptions
my_timezone = timezone(timedelta(hours=4, minutes=30))
my_client = DataAPIClient()
my_database = my_client.get_database(
ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
spawn_api_options=APIOptions(
serdes_options=SerdesOptions(
custom_datatypes_in_reading=False,
datetime_tzinfo=my_timezone,
),
),
)
my_collection = my_database.get_collection("my_collection")
# This document will have datetimes set to the desired timezone
document = my_collection.find_one({"code": 123})
Astrapy repackages the ObjectId from bson
and the UUID class and utilities
from the uuid
package and its uuidv6
extension. You can also use them directly.
Even when setting a default ID type for a collection, you still retain the freedom to use any ID type for any document:
from astrapy import DataAPIClient
from astrapy.constants import DefaultIdType
from astrapy.ids import ObjectId, uuid8, UUID
import bson
ASTRA_DB_APPLICATION_TOKEN = "AstraCS:..."
ASTRA_DB_API_ENDPOINT = "https://01234567-....apps.astra.datastax.com"
my_client = DataAPIClient()
my_database = my_client.get_database(
ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
)
my_collection = my_database.create_collection(
"ecommerce",
definition=CollectionDefinition.builder().set_default_id(
DefaultIdType.UUIDV6
).build(),
)
my_collection.insert_one({"_id": ObjectId("65fd9b52d7fabba03349d013")})
my_collection.find({
"_id": UUID("018e65c9-e33d-749b-9386-e848739582f0"),
})
my_collection.update_one(
{"tag": "in_stock"},
{"$set": {"inventory_id": bson.objectid.ObjectId()}},
upsert=True,
)
my_collection.insert_one({"_id": uuid8()})
Field names containing special characters (.
and &
) must be correctly escaped
in certain Data API commands. It is a responsibility of the user to ensure escaping
is done when needed; however, AstraPy offers utilities to escape sequences of "path
segments" and -- should it ever be needed -- unescape path-strings back into
literal segments:
from astrapy.utils.document_paths import escape_field_names, unescape_field_path
print(escape_field_names("f1", "f2", 12, "g.&3"))
# prints: f1.f2.12.g&.&&3
print(escape_field_names(["f1", "f2", 12, "g.&3"]))
# prints: f1.f2.12.g&.&&3
print(unescape_field_path("a&&&.b.c.d.12"))
# prints: ['a&.b', 'c', 'd', '12']
First install uv
(e.g. pipx install uv
), then set up a dev environment with make venv
, or equivalently:
uv venv
uv sync --dev
Linter, style and typecheck should all pass for a PR:
make format
With make format-fix
the style and imports are autofixed (by ruff
)
Features must be thoroughly covered in tests (have a look at tests/*
to infer
naming convention and module structure).
Tests are grouped in:
- "base", covering general-purpose astrapy functionality. Divided in unit/integration;
- "vectorize", extensively running a base workload on all provider/integration choices;
- "admin", doing a whole sweep of admin operations. Very slow on Astra DB.
Astrapy's CI only runs "base". The others are to be checked manually when it's needed.
Tests can be run on three types of Data API targets (with slight differences in what is applicable):
- DockerCompose: HCD+Data API, started by the test initialization with
docker-compose
. Note that in this case you will have to manually destroy the created containers. - nonAstra: a ready-to-use (user-supplied) local Data API (e.g. using
tests/dse_compose
) - Astra: an Astra DB target account (or two, as some tests are specific to dev environment)
Depending on the test, different environment variables are needed: refer to
the templates in tests/env_templates
. The "basic" credentials (one of the three options)
are always required, even for unit testing.
If may be useful to run e.g. unit tests with multiple Python versions. You can have uv
create more than one venv and specify the version, e.g. for each one:
uv venv --python 3.8 .venv-3.8
. .venv-3.8/bin/activate
uv sync --dev --active
Then, with the desired virtual env active, you will simply run e.g. uv run pytest [...]
.
Most make targets will also support running in the named virtual env:
assuming you activated a certain virtual env, you can run e.g.: make format VENV=true
.
After editing the pyproject.toml
, make sure you run
uv lock
uv sync --dev
and then commit the new uv.lock
to the repo as well.
Base:
# choose one:
uv run pytest tests/base
uv run pytest tests/base/unit
uv run pytest tests/base/integration
Note: when running locally, the reranking-related tests require ASTRAPY_FINDANDRERANK_USE_RERANKER_HEADER=y
and
HEADER_RERANKING_API_KEY_NVIDIA="AstraCS:`.
Admin:
# depending on the environment, different 'admin tests' will run:
uv run pytest tests/admin
Extended vectorize:
# very many env. variables required for this one:
uv run pytest tests/vectorize
# restrict to some combination(s) with e.g.:
EMBEDDING_MODEL_TAGS="openai/text-embedding-3-large/HEADER/0,voyageAI/voyage-finance-2/SHARED_SECRET/f" \
uv run pytest tests/vectorize/integration/test_vectorize_providers.py \
-k test_vectorize_usage_auth_type_header_sync
All the usual pytest
ways of restricting the test selection hold
(e.g. uv run pytest tests/idiomatic/unit
or [...] -k <test_name_selector>
). Also e.g.:
# suppress log noise
uv run pytest [...] -o log_cli=0
# increase log level
uv run pytest [...] -o log_cli=1 --log-cli-level=10
The following are special provision to manage features under evolution or not entirely deployed to all environments. Typically they require manually passing certain environment variables, otherwise the associated tests are excluded from CI.
Prepend tests with a ASTRAPY_TEST_LATEST_MAIN=y
for features found on main
that are not released anywhere.
Prepend tests with a ASTRAPY_TEST_UDT=y
to enable testing of Data API support for user-defined types (UDTs).
These integration tests are off by default, pending release on all test target environments.
Note: check tests/base/unit/test_imports.py
for more.
Client, data and admin abstractions
from astrapy import (
AstraDBAdmin,
AstraDBDatabaseAdmin,
AsyncCollection,
AsyncDatabase,
AsyncTable,
Collection,
Database,
DataAPIClient,
DataAPIDatabaseAdmin,
Table,
)
Constants for data-related use:
from astrapy.constants import (
DefaultIdType,
Environment,
MapEncodingMode,
ReturnDocument,
SortMode,
VectorMetric,
)
Cursor for find-like operations:
from astrapy.cursors import (
AbstractCursor,
AsyncCollectionFindAndRerankCursor,
AsyncCollectionFindCursor,
AsyncTableFindCursor,
CollectionFindAndRerankCursor,
CollectionFindCursor,
CursorState,
RerankedResult,
TableFindCursor,
)
ObjectIds and UUIDs:
from astrapy.ids import (
UUID,
ObjectId,
uuid1,
uuid3,
uuid4,
uuid5,
uuid6,
uuid7,
uuid8,
)
API Options:
from astrapy.api_options import (
APIOptions,
DataAPIURLOptions,
DevOpsAPIURLOptions,
SerdesOptions,
TimeoutOptions,
)
Data types:
from astrapy.data_types import (
DataAPIDate,
DataAPIDuration,
DataAPIMap,
DataAPISet,
DataAPITime,
DataAPITimestamp,
DataAPIDictUDT,
DataAPIVector,
)
Info/metadata classes:
from astrapy.info import (
AlterTableAddColumns,
AlterTableAddVectorize,
AlterTableDropColumns,
AlterTableDropVectorize,
AlterTypeAddFields,
AlterTypeOperation,
AlterTypeRenameFields,
AstraDBAdminDatabaseInfo,
AstraDBDatabaseInfo,
CollectionDefaultIDOptions,
CollectionDefinition,
CollectionDescriptor,
CollectionInfo,
CollectionLexicalOptions,
CollectionRerankOptions,
CollectionVectorOptions,
ColumnType,
CreateTableDefinition,
CreateTypeDefinition,
EmbeddingProvider,
EmbeddingProviderAuthentication,
EmbeddingProviderModel,
EmbeddingProviderParameter,
EmbeddingProviderToken,
FindEmbeddingProvidersResult,
FindRerankingProvidersResult,
ListTableDefinition,
ListTableDescriptor,
ListTypeDescriptor,
RerankingProvider,
RerankingProviderAuthentication,
RerankingProviderModel,
RerankingProviderParameter,
RerankingProviderToken,
RerankServiceOptions,
TableAPIIndexSupportDescriptor,
TableAPISupportDescriptor,
TableBaseIndexDefinition,
TableIndexDefinition,
TableIndexDescriptor,
TableIndexOptions,
TableInfo,
TableKeyValuedColumnType,
TableKeyValuedColumnTypeDescriptor,
TablePrimaryKeyDescriptor,
TableScalarColumnTypeDescriptor,
TableTextIndexDefinition,
TableTextIndexOptions,
TableUnsupportedColumnTypeDescriptor,
TableUnsupportedIndexDefinition,
TableUDTColumnDescriptor,
TableValuedColumnType,
TableValuedColumnTypeDescriptor,
TableVectorColumnTypeDescriptor,
TableVectorIndexDefinition,
TableVectorIndexOptions,
VectorServiceOptions,
)
Authentication:
from astrapy.authentication import (
StaticTokenProvider,
UsernamePasswordTokenProvider,
EmbeddingAPIKeyHeaderProvider,
AWSEmbeddingHeadersProvider,
)
Miscellaneous utilities:
# Parsing API Endpoints for Astra DB:
from astrapy.admin import (
ParsedAPIEndpoint,
parse_api_endpoint,
)
# Escaping/unescaping document paths:
from astrapy.utils.document_paths import (
escape_field_names,
unescape_field_path,
)
# API Options defaults:
from astrapy.utils.api_options import defaultAPIOptions
If your code still uses the pre-1.0.0 astrapy (i.e. from astrapy.db import AstraDB, AstraDBCollection
and so on)
you are strongly advised to migrate to the current API. All of the astrapy pre-1.0 API (later dubbed "core")
works throughout astrapy v1, albeit with a deprecation warning on astrapy v. 1.5.
Version 2 drops "core" support entirely. In order to use astrapy version 2.0+, you need to migrate your application. Check the links at the beginning of this README for the updated documentation and API reference.
Check out previous versions of this README for more on "core": 1.5.2 and pre-1.0.