Skip to content

[CVPR'23] Official PyTorch implementation of Distilling Self-Supervised Vision Transformers for Weakly-Supervised Few-Shot Classification & Segmentation

License

Notifications You must be signed in to change notification settings

dahyun-kang/cst

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Distilling Self-Supervised Vision Transformers for Weakly-Supervised Few-Shot Classification & Segmentation

Dahyun Kang1,2    Piotr Koniusz3,4    Minsu Cho2    Naila Murray1

1Meta AI   2POSTECH   3Data61🖤CSIRO   4Australian National University



result

This repo is the official implementation of the CVPR 2023 paper: Distilling Self-Supervised Vision Transformers for Weakly-Supervised Few-Shot Classification & Segmentation.

Environmnet installation

This project is built upon the following environment:

The package requirements can be installed via environment.yml, which includes

conda env create --name pytorch1.12 --file environment.yml -p YOURCONDADIR/envs/pytorch1.12
conda activate pytorch1.12

Make sure to replace YOURCONDADIR in the installation path with your conda dir, e.g., ~/anaconda3

Datasets

Download the datasets by following the file structure below and set args.datapath=YOUR_DATASET_DIR:

    YOUR_DATASET_DIR/
    ├── VOC2012/
    │   ├── Annotations/
    │   ├── JPEGImages/
    │   ├── ...
    ├── COCO2014/
    │   ├── annotations/
    │   ├── train2014/
    │   ├── val2014/
    │   ├── ...
    ├── ...

Training with pixel-level supervision

python main.py --datapath YOUR_DATASET_DIR \
               --benchmark {pascal, coco} \
               --logpath YOUR_DIR_TO_SAVE_CKPT \
               --fold {0, 1, 2, 3} \
               --sup mask

Training with image-level supervision

python main.py --datapath YOUR_DATASET_DIR \
               --benchmark {pascal, coco} \
               --logpath YOUR_DIR_TO_SAVE_CKPT \
               --fold {0, 1, 2, 3} \
               --sup pseudo

CST model checkpoints

Experimental results on Pascal-5i datasets on the FS-CS task.

Performance results Links to download checkpoints
methods 1-way 1-shot 2-way 1-shot 4-fold validation folds
metric cls. 0/1 ER seg. mIoU cls. 0/1 ER seg. mIoU fold0 fold1 fold2 fold3
image-level supervised models 79.9 33.2 64.6 31.9 link link link link
pixel-level supervised models 85.7 55.5 70.4 53.7 link link link link

Experimental results on COCO-20i datasets on the FS-CS task.

Performance results Links to download checkpoints
methods 1-way 1-shot 2-way 1-shot 4-fold validation folds
metric cls. 0/1 ER seg. mIoU cls. 0/1 ER seg. mIoU fold0 fold1 fold2 fold3
image-level supervised models 78.2 19.6 62.4 18.3 link link link link
pixel-level supervised models 80.8 38.3 64.0 36.2 link link link link

📜 BibTex source

If you find our code or paper useful, please consider citing our paper:

@inproceedings{kang2023distilling,
  title={Distilling Self-Supervised Vision Transformers for Weakly-Supervised Few-Shot Classification \& Segmentation},
  author={Kang, Dahyun and Koniusz, Piotr and Cho, Minsu and Murray, Naila},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2023}
}

About

[CVPR'23] Official PyTorch implementation of Distilling Self-Supervised Vision Transformers for Weakly-Supervised Few-Shot Classification & Segmentation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages