Skip to content

comurphy22/stock-data-mining

Repository files navigation

Stock Prediction with Politician Trading Signals

ML system predicting stock movements using congressional trading data, news sentiment, and technical indicators.

Run the Web App

Step 1: Clone & Setup

git clone https://github.com/comurphy22/StockPrediction.git
cd StockPrediction

Step 2: Create API Key File

Create a .env file in the project root:

QUIVER_API_KEY=your_key_here

Get your free key at quiverquant.com

Step 3: Start Backend

python -m venv venv
source venv/bin/activate      # Windows: venv\Scripts\activate
pip install -r backend/requirements.txt
python -c "import nltk; nltk.download('vader_lexicon')"

cd backend
PYTHONPATH=../src uvicorn app.main:app --port 8000

Step 4: Start Frontend (new terminal)

cd frontend
npm install
npm run dev

Step 5: Open App

Go to http://localhost:3000


Results

Sector Stock Accuracy
Financials WFC 70%
Healthcare PFE 60%
Tech GOOGL 50%

Politician signals work best for financial/healthcare sectors.

Authors

Conner Murphy & William Coleman

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •