ML system predicting stock movements using congressional trading data, news sentiment, and technical indicators.
git clone https://github.com/comurphy22/StockPrediction.git
cd StockPredictionCreate a .env file in the project root:
QUIVER_API_KEY=your_key_here
Get your free key at quiverquant.com
python -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
pip install -r backend/requirements.txt
python -c "import nltk; nltk.download('vader_lexicon')"
cd backend
PYTHONPATH=../src uvicorn app.main:app --port 8000cd frontend
npm install
npm run devGo to http://localhost:3000
| Sector | Stock | Accuracy |
|---|---|---|
| Financials | WFC | 70% |
| Healthcare | PFE | 60% |
| Tech | GOOGL | 50% |
Politician signals work best for financial/healthcare sectors.
Conner Murphy & William Coleman