Skip to content

Adding CleavedAutoModelForCausalLM #7

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 3 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file added src/cleave/__init__.py
Empty file.
151 changes: 151 additions & 0 deletions src/cleave/modelling.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
import os
import torch
import torch.nn.functional as F
import lightning as L

from transformers import (
AutoModelForCausalLM,
Cache, DynamicCache
)
from transformers.utils import logging, LossKwargs
from transformers.processing_utils import Unpack
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast
)
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs

from typing import Optional, Union, Tuple


logger = logging.get_logger(__name__)

class CleavedAutoModelForCausalLM(L.LightningModule):
def __init__(
self,
target_model_name_or_path: str | os.PathLike,
*, cleave_at_index: int,
adapter_path: os.PathLike = None,
**kwargs
):
"""
Args:
target_model_name_or_path (str or os.PathLike): Can be either:
- a string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- a path to a *directory* containing model weights saved using the
:func:`~transformers.PreTrainedModel.save_pretrained` method, e.g., ``./my_model_directory/``.
- a path or url to a *saved model archive* (e.g, ``./my_model_directory/model.tar.gz``).
cleave_at_index (int): Cleave the model at this index. The first `cleave_at_index` layers of the `target_model` are included in the resized `draft_subnet`. The deeper layers (`cleave_at_index+1` onwards) are in the `verify_subnet`.
adapter_path (os.PathLike, optional): Path to the adapter weights. If provided, the adapter weights will be
loaded into the model.
kwargs: Additional keyword arguments passed to the `AutoModelForCausalLM.from_pretrained` method.

Example:
```python
from cleave.modelling import CleavedAutoModelForCausalLM
cleaved_model = CleavedAutoModelForCausalLM(
"meta-llama/Llama-3.2-1B-Instruct", cleave_at_index=8
)
```
"""
super().__init__()
self.save_hyperparameters()

self.model = AutoModelForCausalLM.from_pretrained(
target_model_name_or_path,
torch_dtype=kwargs.get("torch_dtype") or "auto",
device_map=kwargs.get("device_map") or "auto",
**kwargs
)

assert cleave_at_index > 0, "cleave_at_index must be positive and non-zero"
assert cleave_at_index < self.model.config.num_hidden_layers, \
"cleave_at_index must be less than the number of layers in the model. " \
f"i.e. {self.model.config.num_hidden_layers}"

self.cleave_at_index = cleave_at_index

self.adapter_class = type(self.model.model.layers[-1])

if adapter_path is not None: ... # To-Do

else: self.adapter = self.adapter_class(
config=self.model.config,
layer_idx=self.cleave_at_index
)

# Extracting the aux layers from the model
self.embed_tokens = self.model.model.embed_tokens
self.lm_head = self.model.lm_head

def shallow_subnet_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
):
"""
Args:
Refer to
https://huggingface.co/docs/transformers/model_doc/llama2#transformers.LlamaForCausalLM
"""
pass

def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, CausalLMOutputWithPast]:
"""
Args:
Refer to
https://huggingface.co/docs/transformers/model_doc/llama2#transformers.LlamaForCausalLM
"""
pass


def training_step(self, batch, batch_idx): ...

def verify_step(self, batch, batch_idx): ...

def validation_step(self, batch, batch_idx): ...

def test_step(self, batch, batch_idx): ...

def configure_optimizers(self): ...

def predict_step(self, batch, batch_idx): ...

def predict(self, *args, **kwargs): ...

def generate(self, *args, **kwargs):
return self.predict(*args, **kwargs)

def convert_to_hf(self): ...

def get_shallow_subnet(self): ...

@property
def draft_subnet_parameters_count(self):
return 0 # dummy

@property
def verify_subnet_parameters_count(self):
return 0 # dummy