Skip to content

carlosloslas/lotusStat

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LotusStat

Statistical post processing of Lotus simulations

Installation

  1. Clone repository
  2. Navigate to ...\LotusStat\
  3. Checkout the latest version git checkout vX.Y.Z
  4. Install the package python setup.py install

Quick example

Also found in ...\LotusStat\examples\quick_examply.py

import lotusstat as lstat
import matplotlib.pyplot as plt

data_path = 'fort.9'

data_df = lstat.convert_data_path_to_dataFrame_2d(data_path)
data_df = data_df.iloc[500:,:]

data_df = lstat.calculate_total_forces(data_df)

lift_stats = lstat.calculate_signal_stats(data_df, 'totalForceY', signal_range=(0.8, 1))
drag_stats = lstat.calculate_signal_stats(data_df, 'totalForceX', signal_range=(0.8, 1))

fig1, ax1 = lstat.plot_lift_signal(data_df, show_visc=True, plot_stats=True, stats=lift_stats, show_stats=True, figsize=(10,5))
fig2, ax2 = lstat.plot_drag_signal(data_df, show_visc=False, plot_stats=True, stats=drag_stats, show_stats=True, figsize=(10,5))
plt.close()
plt.close()

lstat.save_figures_to_pdf([fig1, fig2], 'report.pdf')

About

Statistical post processing of Lotus simulations

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages