Skip to content

biocore/unifrac

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

UniFrac

Canonically pronounced yew-nih-frak

Build Status

The de facto repository for high-performance phylogenetic diversity calculations. The methods in this repository are based on an implementation of the Strided State UniFrac algorithm which is faster, and uses less memory than Fast UniFrac. Strided State UniFrac supports Unweighted UniFrac, Weighted UniFrac, Generalized UniFrac, Variance Adjusted UniFrac and meta UniFrac, in both double and single precision (fp32). This repository also includes Stacked Faith (manuscript in preparation), a method for calculating Faith's PD that is faster and uses less memory than the Fast UniFrac-based reference implementation.

This repository produces the Python interface against the C API exposed via a shared library provided by the dependent unifrac-binaries repository.

Citation

A original description of the Strided State UniFrac algorithm can be found in McDonald et al. 2018 Nature Methods with further improvements available in Sfiligoi et al. mSystems 2022. Please note that this package implements multiple UniFrac variants, which may have their own citation. Details can be found in the help output from the command line interface in the citations section, and is included immediately below:

ssu
For UniFrac, please see:
    Sfiligoi et al. mSystems 2022; DOI: 10.1128/msystems.00028-22
    McDonald et al. Nature Methods 2018; DOI: 10.1038/s41592-018-0187-8
    Lozupone and Knight Appl Environ Microbiol 2005; DOI: 10.1128/AEM.71.12.8228-8235.2005
    Lozupone et al. Appl Environ Microbiol 2007; DOI: 10.1128/AEM.01996-06
    Hamady et al. ISME 2010; DOI: 10.1038/ismej.2009.97
    Lozupone et al. ISME 2011; DOI: 10.1038/ismej.2010.133
For Generalized UniFrac, please see: 
    Chen et al. Bioinformatics 2012; DOI: 10.1093/bioinformatics/bts342
For Variance Adjusted UniFrac, please see: 
    Chang et al. BMC Bioinformatics 2011; DOI: 10.1186/1471-2105-12-118

faithpd
For Faith's PD, please see:
    Faith Biological Conservation 1992; DOI: 10.1016/0006-3207(92)91201-3

Install

At this time, there are three primary ways to install the library. The first is through QIIME2, the second is through bioconda, and the third is via pip. It is also possible to clone the repository and install the python bindings with setup.py.

Compilation has been performed on both clang 16.0 (OS X) or gcc 12.2 (Ubuntu) and HDF5 >= 1.8.17. Python installation requires Python >= 3.8, NumPy >= 1.12.1, scikit-bio >= 0.5.8, and Cython >= 0.28.3.

Installation time should be a few minutes at most.

Install (example)

An example of installing UniFrac, and using it with CPUs as well as GPUs, can be be found on Google Colabs.

Install (QIIME2)

The easiest way to use this library is through QIIME2. This library is installed by default with the QIIME 2 Core Distribution. Currently, this module is used for phylogenetic diversity calculations in qiime diversity beta-phylogenetic for UniFrac and qiime diversity alpha-phylogenetic-alt for Faith's PD.

If installing a newer version of UniFrac into an existing QIIME 2 environment, it is necessary to construct a "throwaway" conda environment, and force the install. An example is below, based on the observations here:

conda create -n throwaway -c bioconda -c conda-forge conda-forge::python=3.8 unifrac unifrac-binaries
conda list -n throwaway --explicit | grep 'EXPLICIT\|unifrac\|hdf5\|h5py\|lapack' > packages.txt
conda install -n qiime2-2022.2 --file packages.txt 

Install (bioconda)

This library can also be installed via a combination of conda-forge and bioconda:

conda create --name unifrac -c conda-forge -c bioconda unifrac
pip install iow

Install (pip)

pip install unifrac iow

Install (native)

To install, first the cython wrappers must be compiled. It also needs the libssu library to be present.

Assuming the compiler is in your path, the following should work:

pip install -e . 

Note: if you are using conda we recommend installing the compiler and libssu using the biooconda channel, for example:

conda install -c conda-forge -c bioconda gxx_linux-64 unifrac-binaries

Environment considerations

Multi-core support

Unifrac uses OpenMP to make use of multiple CPU cores. By default, Unifrac will use all the cores that are available on the system. To restrict the number of cores used, set:

export OMP_NUM_THREADS=nthreads

GPU support

On Linux platforms, Unifrac will run on a GPU, if one is found. To disable GPU offload, and thus force CPU-only execution, one can set:

export UNIFRAC_USE_GPU=N

To check which code path is used (Unifrac will print it to standard output at runtime), set:

export UNIFRAC_GPU_INFO=Y

Finally, Unifrac will only use one GPU at a time. If more than one GPU is present, one can select the one to use by setting:

export ACC_DEVICE_NUM=gpunum

Note that there is no GPU support for MacOS.

Examples of use

Below are a few light examples of different ways to use this library.

QIIME2

To use Strided State UniFrac through QIIME2, you need to provide a FeatureTable[Frequency] and a Phylogeny[Rooted] artifacts. An example of use is:

qiime diversity beta-phylogenetic --i-table table-evenly-sampled.qza \
                                  --i-phylogeny a-tree.qza \
                                  --o-distance-matrix resulting-distance-matrix.qza \
                                  --p-metric unweighted_unifrac

To use Stacked Faith through QIIME2, given similar artifacts, you can use:

qiime diversity alpha-phylogenetic-alt --i-table table-evenly-sampled.qza \
                                       --i-phylogeny a-tree.qza \
                                       --o-alpha-diversity resulting-diversity-series.qza \
                                       --p-metric faith_Pd

Python

The library can be accessed directly from within Python. If operating in this mode, the API methods are expecting a filepath to a BIOM-Format V2.1.0 table, and a filepath to a Newick formatted phylogeny.

$ python
Python 3.10.8 | packaged by conda-forge | (main, Nov 22 2022, 08:23:14) [GCC 10.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import unifrac
>>> dir(unifrac)
['__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__',
 '__package__', '__path__', '__spec__', '__version__', '_api', '_meta', '_methods',
 'faith_pd', 'generalized', 'generalized_fp32', 'generalized_fp32_to_file', 'generalized_fp64', 'generalized_fp64_to_file', 'generalized_to_file',
 'h5pcoa', 'h5pcoa_all', 'h5permanova', 'h5permanova_dict', 'h5unifrac', 'h5unifrac_all', 'meta', 'pkg_resources',
 'set_random_seed', 'ssu', 'ssu_fast', 'ssu_inmem', 'ssu_to_file', 'ssu_to_file_v2', 'unweighted', 'unweighted_fp32',
 'unweighted_fp32_to_file', 'unweighted_fp64', 'unweighted_fp64_to_file', 'unweighted_to_file', 'weighted_normalized',
 'weighted_normalized_fp32', 'weighted_normalized_fp32_to_file', 'weighted_normalized_fp64', 'weighted_normalized_fp64_to_file',
 'weighted_normalized_to_file', 'weighted_unnormalized', 'weighted_unnormalized_fp32', 'weighted_unnormalized_fp32_to_file', 
 'weighted_unnormalized_fp64', 'weighted_unnormalized_fp64_to_file', 'weighted_unnormalized_to_file']
>>> print(unifrac.unweighted.__doc__)
Compute Unweighted UniFrac

    Parameters
    ----------
    table : str
        A filepath to a BIOM-Format 2.1 file.
    phylogeny : str
        A filepath to a Newick formatted tree.
    threads : int, optional
        Deprecated, no-op.
    variance_adjusted : bool, optional
        Adjust for varianace or not. Default is False.
    bypass_tips : bool, optional
        Bypass the tips of the tree in the computation. This reduces compute
        by about 50%, but is an approximation.
    n_substeps : int, optional
        Internally split the problem in substeps for reduced memory footprint.

    Returns
    -------
    skbio.DistanceMatrix
        The resulting distance matrix.

    Raises
    ------
    IOError
        If the tree file is not found
        If the table is not found
    ValueError
        If the table does not appear to be BIOM-Format v2.1.
        If the phylogeny does not appear to be in Newick format.

    Environment variables
    ---------------------
    OMP_NUM_THREADS
        Number of CPU cores to use. If not defined, use all detected cores.
    UNIFRAC_USE_GPU
        Enable or disable GPU offload. If not defined, autodetect.
    ACC_DEVICE_NUM
        The GPU to use. If not defined, the first GPU will be used.

    Notes
    -----
    Unweighted UniFrac was originally described in [1]_. Variance Adjusted
    UniFrac was originally described in [2]_, and while its application to
    Unweighted UniFrac was not described, factoring in the variance adjustment
    is still feasible and so it is exposed.

    References
    ----------
    .. [1] Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for
       comparing microbial communities. Appl. Environ. Microbiol. 71, 8228-8235
       (2005).
    .. [2] Chang, Q., Luan, Y. & Sun, F. Variance adjusted weighted UniFrac: a
       powerful beta diversity measure for comparing communities based on
       phylogeny. BMC Bioinformatics 12:118 (2011).
    
>>> print(unifrac.unweighted_to_file.__doc__)
Compute Unweighted UniFrac and write to file

    Parameters
    ----------
    table : str
        A filepath to a BIOM-Format 2.1 file.
    phylogeny : str
        A filepath to a Newick formatted tree.
    out_filename : str
        A filepath to the output file.
    pcoa_dims : int, optional
        Number of dimensions to use for PCoA compute.
        if set to 0, no PCoA is computed.
        Defaults of 10.
    threads : int, optional
        Deprecated, no-op.
    variance_adjusted : bool, optional
        Adjust for varianace or not. Default is False.
    bypass_tips : bool, optional
        Bypass the tips of the tree in the computation. This reduces compute
        by about 50%, but is an approximation.
    format : str, optional
        Output format to use.
        Defaults to "hdf5" if n_subsamples<=1 else "hdf5_nodist"
    buf_dirname : str, optional
        If set, the directory where the disk buffer is hosted,
        can be used to reduce the amount of memory needed.
    n_substeps : int, optional
        Internally split the problem in substeps for reduced memory footprint.
    n_subsamples : int
        If >1, perform multiple subsamples.
    subsample_depth : int
        Depth of subsampling, if >0
    subsample_with_replacement : bool
        Use subsampling with replacement? (only True supported in 1.3)
    permanova_perms : int
        If not 0, compute PERMANOVA using that many permutations
    grouping_filename : str
        The TSV filename containing grouping information
    grouping_columns : str
        The columns to use for grouping

    Returns
    -------
    str
        A filepath to the output file.

    Raises
    ------
    IOError
        If the tree file is not found
        If the table is not found
        If the output file cannot be created
    ValueError
        If the table does not appear to be BIOM-Format v2.1.
        If the phylogeny does not appear to be in Newick format.

    Environment variables
    ---------------------
    OMP_NUM_THREADS
        Number of CPU cores to use. If not defined, use all detected cores.
    UNIFRAC_USE_GPU
        Enable or disable GPU offload. If not defined, autodetect.
    ACC_DEVICE_NUM
        The GPU to use. If not defined, the first GPU will be used.

    Notes
    -----
    Unweighted UniFrac was originally described in [1]_. Variance Adjusted
    UniFrac was originally described in [2]_, and while its application to
    Unweighted UniFrac was not described, factoring in the variance adjustment
    is still feasible and so it is exposed.

    References
    ----------
    .. [1] Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for
       comparing microbial communities. Appl. Environ. Microbiol. 71, 8228-8235
       (2005).
    .. [2] Chang, Q., Luan, Y. & Sun, F. Variance adjusted weighted UniFrac: a
       powerful beta diversity measure for comparing communities based on
       phylogeny. BMC Bioinformatics 12:118 (2011).

>>> print(unifrac.faith_pd.__doc__)
Execute a call to the Stacked Faith API in the UniFrac package

	Parameters
	----------
	biom_filename : str
		A filepath to a BIOM 2.1 formatted table (HDF5)
	tree_filename : str
		A filepath to a Newick formatted tree

	Returns
	-------
	pd.Series
		Series of Faith's PD for each sample in `biom_filename`

	Raises
	------
	IOError
		If the tree file is not found
		If the table is not found
		If the table is empty

>>> print(unifrac.h5unifrac.__doc__)
Read UniFrac from a hdf5 file

    Parameters
    ----------
    h5file : str
        A filepath to a hdf5 file.

    Returns
    -------
    skbio.DistanceMatrix
        The distance matrix.

    Raises
    ------
    OSError
        If the hdf5 file is not found
    KeyError
        If the hdf5 does not have the necessary fields

    References
    ----------
    .. [1] Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for
       comparing microbial communities. Appl. Environ. Microbiol. 71, 8228-8235
       (2005).
    .. [2] Chang, Q., Luan, Y. & Sun, F. Variance adjusted weighted UniFrac: a
       powerful beta diversity measure for comparing communities based on
       phylogeny. BMC Bioinformatics 12:118 (2011).
     
>>> print(unifrac.h5pcoa.__doc__)
Read PCoA from a hdf5 file

    Parameters
    ----------
    h5file : str
        A filepath to a hdf5 file.

    Returns
    -------
    skbio.OrdinationResults
        The PCoA of the distance matrix

    Raises
    ------
    OSError
        If the hdf5 file is not found
    KeyError
        If the hdf5 does not have the necessary fields

>>> print(unifrac.h5permanova_dict.__doc__)
Read PERMANOVA statistical tests from a hdf5 file

    As describe in scikit-bio skbio.stats.distance.permanova.py,
    Permutational Multivariate Analysis of Variance (PERMANOVA) is a
    non-parametric method that tests whether two or more groups of objects
    are significantly different based on a categorical factor.

    Parameters
    ----------
    h5file : str
        A filepath to a hdf5 file.

    Returns
    -------
    dict[str]=pandas.Series
        Results of the statistical test, including ``test statistic`` and
        ``p-value``.

    Raises
    ------
    OSError
        If the hdf5 file is not found
    KeyError
        If the hdf5 does not have the necessary fields

    References
    ----------
    .. [1] Anderson, Marti J. "A new method for non-parametric multivariate
       analysis of variance." Austral Ecology 26.1 (2001): 32-46.

Command line

The methods can also be used directly through the command line after install of the dependent unifrac-binaries package:

$ which ssu
/Users/<username>/miniconda3/envs/qiime2-20xx.x/bin/ssu
$ ssu --help
usage: ssu -i <biom> -o <out.dm> -m [METHOD] -t <newick> [-a alpha] [-f]  [--vaw]
    [--mode MODE] [--start starting-stripe] [--stop stopping-stripe] [--partial-pattern <glob>]
    [--n-partials number_of_partitions] [--report-bare] [--format|-r out-mode]
    [--n-substeps n] [--pcoa dims] [--diskbuf path]

    -i		The input BIOM table.
    -t		The input phylogeny in newick.
    -m		The method, [unweighted | weighted_normalized | weighted_unnormalized | generalized | 
                             unweighted_fp32 | weighted_normalized_fp32 | weighted_unnormalized_fp32 | generalized_fp32].
    -o		The output distance matrix.
    -a		[OPTIONAL] Generalized UniFrac alpha, default is 1.
    -f		[OPTIONAL] Bypass tips, reduces compute by about 50%.
    --vaw	[OPTIONAL] Variance adjusted, default is to not adjust for variance.
    --mode	[OPTIONAL] Mode of operation:
                            one-off : [DEFAULT] compute UniFrac.
                            partial : Compute UniFrac over a subset of stripes.
                            partial-report : Start and stop suggestions for partial compute.
                            merge-partial : Merge partial UniFrac results.
    --start	[OPTIONAL] If mode==partial, the starting stripe.
    --stop	[OPTIONAL] If mode==partial, the stopping stripe.
    --partial-pattern	[OPTIONAL] If mode==merge-partial, a glob pattern for partial outputs to merge.
    --n-partials 	[OPTIONAL] If mode==partial-report, the number of partitions to compute.
    --report-bare	[OPTIONAL] If mode==partial-report, produce barebones output.
    --n-substeps 	[OPTIONAL] Internally split the problem in n substeps for reduced memory footprint, default is 1.
    --format|-r	[OPTIONAL]  Output format:
                             ascii : [DEFAULT] Original ASCII format.
                             hfd5 : HFD5 format.  May be fp32 or fp64, depending on method.
                             hdf5_fp32 : HFD5 format, using fp32 precision.
                             hdf5_fp64 : HFD5 format, using fp64 precision.
    --pcoa	[OPTIONAL] Number of PCoA dimensions to compute (default: 10, do not compute if 0)
    --diskbuf	[OPTIONAL] Use a disk buffer to reduce memory footprint. Provide path to a fast partition (ideally NVMe).
    -n		[OPTIONAL] DEPRECATED, no-op.

Environment variables: 
    CPU parallelism is controlled by OMP_NUM_THREADS. If not defined, all detected core will be used.
    GPU offload can be disabled with UNIFRAC_USE_GPU=N. By default, if a NVIDIA GPU is detected, it will be used.
    A specific GPU can be selected with ACC_DEVICE_NUM. If not defined, the first GPU will be used.

Citations: 
    For UniFrac, please see:
        Sfiligoi et al. mSystems 2022; DOI: 10.1128/msystems.00028-22
        McDonald et al. Nature Methods 2018; DOI: 10.1038/s41592-018-0187-8
        Lozupone and Knight Appl Environ Microbiol 2005; DOI: 10.1128/AEM.71.12.8228-8235.2005
        Lozupone et al. Appl Environ Microbiol 2007; DOI: 10.1128/AEM.01996-06
        Hamady et al. ISME 2010; DOI: 10.1038/ismej.2009.97
        Lozupone et al. ISME 2011; DOI: 10.1038/ismej.2010.133
    For Generalized UniFrac, please see: 
        Chen et al. Bioinformatics 2012; DOI: 10.1093/bioinformatics/bts342
    For Variance Adjusted UniFrac, please see: 
        Chang et al. BMC Bioinformatics 2011; DOI: 10.1186/1471-2105-12-118

$ which faithpd
/Users/<username>/miniconda3/envs/qiime2-20xx.x/bin/faithpd
$ faithpd --help
usage: faithpd -i <biom> -t <newick> -o <out.txt>

	-i          The input BIOM table.
	-t          The input phylogeny in newick.
	-o          The output series.

Citations: 
	For Faith's PD, please see:
		Faith Biological Conservation 1992; DOI: 10.1016/0006-3207(92)91201-3

Minor test dataset

A small test .biom and .tre can be found in unifrac/tests/data/. An example with expected output is below, and should execute in 10s of milliseconds:

$ python
Python 3.10.8 | packaged by conda-forge | (main, Nov 22 2022, 08:23:14) [GCC 10.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import unifrac
>>> d=unifrac.unweighted('unifrac/tests/data/crawford.biom','unifrac/tests/data/crawford.tre')
>>> d.data
array([[0.        , 0.71836066, 0.7131736 , 0.6974604 , 0.6258721 ,
        0.7282667 , 0.72065896, 0.7264058 , 0.7360605 ],
       [0.71836066, 0.        , 0.7030297 , 0.734073  , 0.6548042 ,
        0.71547383, 0.7839781 , 0.723184  , 0.7613893 ],
       [0.7131736 , 0.7030297 , 0.        , 0.6104128 , 0.623313  ,
        0.71848303, 0.7041634 , 0.75258476, 0.7924903 ],
       [0.6974604 , 0.734073  , 0.6104128 , 0.        , 0.6439278 ,
        0.7005273 , 0.6983272 , 0.77818936, 0.72959894],
       [0.6258721 , 0.6548042 , 0.623313  , 0.6439278 , 0.        ,
        0.75782686, 0.7100514 , 0.75065047, 0.7894437 ],
       [0.7282667 , 0.71547383, 0.71848303, 0.7005273 , 0.75782686,
        0.        , 0.63593644, 0.71283615, 0.5831464 ],
       [0.72065896, 0.7839781 , 0.7041634 , 0.6983272 , 0.7100514 ,
        0.63593644, 0.        , 0.6920076 , 0.6897206 ],
       [0.7264058 , 0.723184  , 0.75258476, 0.77818936, 0.75065047,
        0.71283615, 0.6920076 , 0.        , 0.7151408 ],
       [0.7360605 , 0.7613893 , 0.7924903 , 0.72959894, 0.7894437 ,
        0.5831464 , 0.6897206 , 0.7151408 , 0.        ]], dtype=float32)