This ROS package implements adaptive clustering for 2D LiDAR data. The adaptive clustering algorithm groups nearby points in the LiDAR scan based on adaptive thresholds, providing a more accurate representation of objects in the environment.
- ROS
- LiDAR
- Adaptive Clustering
- Robotics
- Sensor Data
- Visualization
- Python
- Catkin
- Marker Array
ROS, LiDAR, Adaptive Clustering, Robotics, Sensor Data, Visualization, Python, Catkin, Marker Array
- ROS (Robot Operating System)
- Catkin workspace
-
Clone the repository to your catkin workspace:
git clone https://github.com/your-username/adaptive_clustering_2D.git
-
Build the catkin workspace:
cd path/to/your/catkin_workspace catkin_make source devel/setup.bash
To launch the adaptive clustering node with default settings (subscribing to the /scan topic):
roslaunch adaptive_clustering_2D adaptive_clustering.launchTo launch the adaptive clustering node with a custom scan topic (e.g., /my_custom_scan):
roslaunch adaptive_clustering_2D adaptive_clustering.launch scan_topic:=/my_custom_scanscan_topic(default:/scan): The LiDAR scan topic to subscribe to.cluster_size_min(default:3): Minimum size of a cluster to be considered.tolerance_factor(default:0.1): Factor used to calculate adaptive threshold.
Adjust these parameters in the launch file as needed.
@article{gomez2023efficient,
title={Efficient Detection and Tracking of Human Using 3D LiDAR Sensor},
author={G{'o}mez, J. and Aycard, O. and Baber, J.},
journal={Sensors},
volume={23},
number={10},
pages={4720},
year={2023},
}