-
Notifications
You must be signed in to change notification settings - Fork 95
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
182 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
checkponts | ||
models | ||
miniconda3 | ||
pt_torchtune | ||
torchtune | ||
Miniconda3-latest-Linux-x86_64.sh |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
#!/usr/bin/env bash | ||
set -ex | ||
|
||
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
# SPDX-License-Identifier: MIT-0 | ||
|
||
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh | ||
chmod +x Miniconda3-latest-Linux-x86_64.sh | ||
./Miniconda3-latest-Linux-x86_64.sh -b -f -p ./miniconda3 | ||
|
||
source ./miniconda3/bin/activate | ||
|
||
conda create -y -p ./pt_torchtune python=3.10 | ||
|
||
source activate ./pt_torchtune/ | ||
|
||
# Install AWS Pytorch, see https://aws-pytorch-doc.com/ | ||
# conda install -y pytorch=2.2.0 torchvision torchaudio torchtriton=2.2.0 pytorch-cuda=12.1 transformers datasets --strict-channel-priority --override-channels -c https://aws-ml-conda.s3.us-west-2.amazonaws.com -c nvidia -c conda-forge | ||
conda install -y pytorch torchvision torchaudio pytorch-cuda=12.1 transformers datasets -c pytorch -c nvidia | ||
|
||
git clone https://github.com/pytorch/torchtune.git | ||
pip install -e ./torchtune | ||
|
||
# Create checkpoint dir | ||
mkdir checkpoints |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
#!/bin/bash | ||
|
||
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
# SPDX-License-Identifier: MIT-0 | ||
|
||
# set -ex; | ||
|
||
# Default value for HF_MODEL | ||
DEFAULT_HF_MODEL="meta-llama/Llama-2-7b" | ||
read -p "Please enter Hugging Face model ($DEFAULT_HF_MODEL): " HF_MODEL | ||
if [ -z "$HF_MODEL" ]; then | ||
HF_MODEL="$DEFAULT_HF_MODEL" | ||
fi | ||
|
||
read -p "Please enter Hugging Face Access Tokens: " HF_TOKEN | ||
|
||
mkdir -p models/${HF_MODEL} | ||
|
||
tune download \ | ||
${HF_MODEL} \ | ||
--output-dir models/${HF_MODEL} \ | ||
--hf-token ${HF_TOKEN} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
#!/bin/bash | ||
|
||
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
# SPDX-License-Identifier: MIT-0 | ||
|
||
#SBATCH --nodes=1 # number of nodes to use | ||
#SBATCH --job-name=full_ft # name of your job | ||
#SBATCH --exclusive # job has exclusive use of the resource, no sharing | ||
|
||
set -ex; | ||
|
||
########################### | ||
###### User Variables ##### | ||
########################### | ||
|
||
GPUS_PER_NODE=4 # 4 for G5.12x, 8 for P4/P5 | ||
|
||
########################### | ||
## Environment Variables ## | ||
########################### | ||
|
||
## Plenty of EFA level variables | ||
## Comment out for non-efa instances (G4d, P3) | ||
## For G5.12x, Comment out RDMA and Fork safe | ||
## For G4dn and other G5, comment out all | ||
# export FI_EFA_USE_DEVICE_RDMA=1 # use for p4d | ||
# export FI_EFA_FORK_SAFE=1 | ||
export FI_LOG_LEVEL=1 | ||
export FI_PROVIDER=efa | ||
export NCCL_DEBUG=INFO | ||
## Switching SYNC_MEMOPS to zero can boost throughput with FSDP | ||
## Disables CU_POINTER_ATTRIBUTE_SYNC_MEMOPS | ||
## Reduces memory synchronizations | ||
## https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__UNIFIED.html | ||
export FI_EFA_SET_CUDA_SYNC_MEMOPS=0 | ||
|
||
########################### | ||
####### Torch Dist ####### | ||
########################### | ||
|
||
declare -a TORCHRUN_ARGS=( | ||
--nproc_per_node=$GPUS_PER_NODE \ | ||
--nnodes=$SLURM_JOB_NUM_NODES \ | ||
--rdzv_id=$SLURM_JOB_ID \ | ||
--rdzv_backend=c10d \ | ||
--rdzv_endpoint=$(hostname) \ | ||
) | ||
|
||
export TORCHTUNE=./pt_torchtune/bin/tune | ||
export TRAIN_CONFIG=./llama2_7B_full.yaml | ||
|
||
srun -l ${TORCHTUNE} run "${TORCHRUN_ARGS[@]}" full_finetune_distributed --config ${TRAIN_CONFIG} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
# Config for multi-device full finetuning in full_finetune_distributed.py | ||
# using a Llama2 7B model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download meta-llama/Llama-2-7b \ | ||
# --hf-token <HF_TOKEN> \ | ||
# --output-dir /tmp/llama2 | ||
# | ||
# To launch on 4 devices, run the following command from root: | ||
# tune run --nproc_per_node 4 full_finetune_distributed \ | ||
# --config llama2/7B_full \ | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training | ||
# you can run: | ||
# tune run --nnodes 1 --nproc_per_node 4 full_finetune_distributed \ | ||
# --config llama2/7B_full \ | ||
# checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
# | ||
# This config works best when the model is being fine-tuned on 2+ GPUs. | ||
# Single device full finetuning requires more memory optimizations. It's | ||
# best to use 7B_full_single_device.yaml for those cases | ||
|
||
|
||
# Tokenizer | ||
tokenizer: | ||
_component_: torchtune.models.llama2.llama2_tokenizer | ||
path: models/meta-llama/Llama-2-7b/tokenizer.model | ||
|
||
# Dataset | ||
dataset: | ||
_component_: torchtune.datasets.alpaca_dataset | ||
train_on_input: True | ||
seed: null | ||
shuffle: True | ||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.llama2.llama2_7b | ||
|
||
checkpointer: | ||
_component_: torchtune.utils.FullModelMetaCheckpointer | ||
checkpoint_dir: models/meta-llama/Llama-2-7b | ||
checkpoint_files: [consolidated.00.pth] | ||
recipe_checkpoint: null | ||
output_dir: models/meta-llama/Llama-2-7b | ||
model_type: LLAMA2 | ||
resume_from_checkpoint: False | ||
|
||
# Fine-tuning arguments | ||
batch_size: 2 | ||
epochs: 3 | ||
optimizer: | ||
_component_: torch.optim.AdamW | ||
lr: 2e-5 | ||
loss: | ||
_component_: torch.nn.CrossEntropyLoss | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 1 | ||
|
||
|
||
# Training env | ||
device: cuda | ||
|
||
# Memory management | ||
enable_activation_checkpointing: True | ||
|
||
# Reduced precision | ||
dtype: bf16 | ||
|
||
# Logging | ||
metric_logger: | ||
_component_: torchtune.utils.metric_logging.DiskLogger | ||
log_dir: ${output_dir} | ||
output_dir: /tmp/alpaca-llama2-finetune | ||
log_every_n_steps: null |