-
Notifications
You must be signed in to change notification settings - Fork 92
/
eval_meshes.py
132 lines (108 loc) · 3.87 KB
/
eval_meshes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import argparse
# import numpy as np
import os
from tqdm import tqdm
import pandas as pd
import trimesh
import torch
from im2mesh import config, data
from im2mesh.eval import MeshEvaluator
parser = argparse.ArgumentParser(
description='Evaluate mesh algorithms.'
)
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--no-cuda', action='store_true', help='Do not use cuda.')
args = parser.parse_args()
cfg = config.load_config(args.config, 'configs/default.yaml')
is_cuda = (torch.cuda.is_available() and not args.no_cuda)
device = torch.device("cuda" if is_cuda else "cpu")
mesh_extension = cfg['generation']['mesh_extension']
# Shorthands
out_dir = cfg['training']['out_dir']
generation_dir = os.path.join(out_dir, cfg['generation']['generation_dir'])
eval_dir = os.path.join(out_dir, 'eval')
eval_file_name = cfg['test']['eval_file_name']
out_file = os.path.join(generation_dir, eval_file_name + 'full.pkl')
out_file_class = os.path.join(generation_dir, eval_file_name + '.csv')
pointcloud_field = data.PointCloudField(
cfg['data']['pointcloud_chamfer_file']
)
fields = {
'pointcloud_chamfer': pointcloud_field,
'idx': data.IndexField(),
}
test_split = cfg['data']['test_split']
print('Test split: ', cfg['data']['test_split'])
dataset_folder = cfg['data']['path']
dataset = data.Shapes3dDataset(
dataset_folder, fields,
cfg['data']['test_split'],
categories=cfg['data']['classes'])
# Evaluator
evaluator = MeshEvaluator(n_points=100000)
# Loader
torch.manual_seed(0)
test_loader = torch.utils.data.DataLoader(
dataset, batch_size=1, num_workers=0, shuffle=True)
if True and not os.path.exists(eval_dir):
os.makedirs(eval_dir)
# Evaluate all classes
eval_dicts = []
print('Evaluating meshes...')
for it, data in enumerate(tqdm(test_loader)):
if data is None:
print('Invalid data.')
continue
# Output folders
mesh_dir = os.path.join(generation_dir, 'meshes')
# pointcloud_dir = os.path.join(generation_dir, 'pointcloud')
# Get index etc.
idx = data['idx'].item()
try:
model_dict = dataset.get_model_dict(idx)
except AttributeError:
model_dict = {'model': str(idx), 'category': 'n/a'}
modelname = model_dict['model']
category_id = model_dict['category']
try:
category_name = dataset.metadata[category_id].get('name', 'n/a')
except AttributeError:
category_name = 'n/a'
if category_id != 'n/a':
mesh_dir = os.path.join(mesh_dir, category_id)
# pointcloud_dir = os.path.join(pointcloud_dir, category_id)
# Evaluate
pointcloud_tgt = data['pointcloud_chamfer'].squeeze(0).numpy()
normals_tgt = data['pointcloud_chamfer.normals'].squeeze(0).numpy()
# Evaluating mesh
# Start row and put basic information inside
eval_dict = {
'idx': idx,
'class id': category_id,
'class name': category_name,
'modelname': modelname,
}
eval_dicts.append(eval_dict)
# Evaluate mesh
mesh_file = os.path.join(mesh_dir, '%s.%s' % (modelname, mesh_extension))
if os.path.exists(mesh_file):
try:
mesh = trimesh.load(mesh_file, process=False)
eval_dict_mesh = evaluator.eval_mesh(
mesh, pointcloud_tgt, normals_tgt)
for k, v in eval_dict_mesh.items():
eval_dict[k + ' (mesh)'] = v
except Exception as e:
print('Warning: mesh cannot be loaded: %s (%s)' % (mesh_file, e))
else:
print('Warning: mesh does not exist: %s' % mesh_file)
# Create pandas dataframe and save
eval_df = pd.DataFrame(eval_dicts)
eval_df.set_index(['idx'], inplace=True)
eval_df.to_pickle(out_file)
# Create CSV file with main statistics
eval_df_class = eval_df.groupby(by=['class name']).mean()
eval_df_class.to_csv(out_file_class)
# Print results
eval_df_class.loc['mean'] = eval_df_class.mean()
print(eval_df_class)