Designing and launching human-in-the-loop systems, complex agents within graphs, corrective/adaptive RAG, and ranking outputs using DyLAN.
Before you begin, ensure you have met the following requirements:
- You have installed Python 3.6+.
First, clone the repository to your local machine using the following command:
git clone [repository-url]
cd [repository-name]
Create a virtual environment using venv
:
python3 -m venv venv
Activate the virtual environment:
- On Windows:
venv\Scripts\activate
- On MacOS/Linux:
source venv/bin/activate
Install the required packages using pip
:
pip install -r requirements.txt
Create a .env
file in the root directory of the project. Use the .env.sample
file as a reference:
cp .env.sample .env
Open the .env
file and update the key values as necessary.
Run the environment setup script:
export OPENAI_API_KEY=[your-key-here]
export COHERE_API_KEY=[your-key-here]
export TAVILY_API_KEY=[your-key-here]
export LANGCHAIN_API_KEY=[your-key-here]
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_PROJECT=default
To run any in-class examples, execute the specific file directly from the command line. For example:
python3 in_class_examples/[file-name]