Supplemental material detailing the algorithms for error-bound calculation and query evaluation over MinMaxCache, as well as a detailed presentation of the user study conducted, can be found here.
Data used for the experiments can be found here.
In this folder, there are 2 sub-folders. One for the real datasets used in the experiments and one for the synthetic. Each contains a notebook, named expand_data.ipynb and create_synth.ipynb respectively.
Required libraries to run both notebooks are: numpy, pandas and datetime.
By running the expand_data.ipynb, the original datasets will be expanded 50 times, and 3 datasets with the same name and the suffix "exp" will be created. Running create_synth.ipynb, will create 11 synthetic timeseries datasets generated from random walks, with the names synthetic{1m-1b}.csv.
First, build the JAR file:
mvn clean package
To start the SpringBoot Rest API, run the following:
java -jar target/min-max-cache-2.0.jar
Method | URL | Description |
---|---|---|
POST |
/api/auth/login |
Logins to the system. |
POST |
/api/data/influx/query |
Queries InfluxDB. |
POST |
/api/data/postgres/query |
Queries PostgreSQL. |
Login, returns a JWT token.
{
"username": "admin",
"password": "password"
}
Query, use the previous token as a bearer token authentication and query the database.
{
"query": {
"from":1330144930991,
"to": 1330146930990,
"measures": [2],
"viewPort":{
"width":600,
"height":300
},
"accuracy": 0.95
},
"schema": "more",
"table" : "manufacturing_exp"
}
To initialize a dataset in a .csv file, run the following:
java -jar target/experiments.jar -path <path_to_csv> -c initialize -type <influx, postgres> -out output -schema <schema> -table <table_name> -timeFormat "yyyy-MM-dd[ HH:mm:ss.SSS]"
To execute a sequence of queries, e.g. using a table, run the following:
java -jar target/experiments.jar -c timeQueries -seqCount 50 -measureChange 0 -type <influx, postgres> -mode <minMax> -measures <measure_ids> -timeCol <timeCol (if postgres)>
-valueCol <valueCol (if postgres)> -idCol <idCol (if postgres)> -zoomFactor 2 -viewport <width,height> -runs 1 -out <output_folder_path> -minShift 0.1 -maxShift 0.5 -schema <schema or bucket> -table <tableName> -timeFormat "yyyy-MM-dd[ HH:mm:ss.SSS]" -a 0.95 -q 0.1 -p 1 -agg 4
-c The command to run, <timeQueries, initialize>
-seqCount No. of queries
-type Database, <influx, postgres>
-mode *Algorithm to run <minMax, m4, raw>
-measures Measure ids, e.g 1,2,3
-timeCol Name of time column (for postgres)
-valueCol Name of value column (for postgres)
-idCol Name of id column (for postgres)
-out Output Folder
-schema *Schema on the DB (On Influx it defines the bucket)
-table Table Name
-zoomFactor Factor by which to zoom in and out%
-viewPort Width, height of the viewport of visualization
-runs No. of times to run the experiment
-minShift Minimum pan shift
-maxShift Maximum pan shift
-timeFormat Time format of the Time Column
-a Accuracy Threshold
-q Query Selectivity
-p Prefetching Toggle
-agg Initial Aggregation Factor
(-queries) *A path to a csv file with predefined epoch-based queries. First column is start epoch and the second end epoch (e.g queries.txt file in the repository). *