A FastMCP server that provides AI assistants with access to Microsoft Entra (Azure AD) directory services. This server enables LLMs to search for users, groups, and check memberships using the Microsoft Graph API.
- 🔍 4 Tools: Search users, search groups, get user membership, get group members
- 🧠 Full-text Search: Uses Microsoft Graph
$searchwith AND tokenization for order-agnostic matches (e.g., "Arun AND Singh" matches "Singh, Arun" and "Arun Kumar Singh") - 📈 Accurate Counts: Uses
ConsistencyLevel: eventualwith$count=trueand pagination across@odata.nextLink - 🔁 Pagination: Users, groups, and group members are paginated to return complete results up to limits
- 🆔 Robust Identifier Resolution: Membership lookup resolves user ID from email/UPN before querying
- 🎨 7 Prompts: Pre-built prompt templates for common Entra queries
- 🔐 Secure Authentication: Uses Azure AD app registration with client credentials
- 🌐 Health Endpoint: Built-in health check for monitoring
- ✅ Fully Tested: Comprehensive test suite with pytest
- Go to Azure Portal → Microsoft Entra ID → App registrations
- Create a new app registration
- Note down:
- Application (client) ID
- Directory (tenant) ID
- Create a client secret under Certificates & secrets
- Grant the following Microsoft Graph API permissions:
User.Read.AllGroup.Read.AllGroupMember.Read.All
Set these environment variables before running. You can either:
Option 1: Direct environment variables
export ENTRA_TENANT_ID="your-tenant-id-here"
export ENTRA_CLIENT_ID="your-client-id-here"
export ENTRA_CLIENT_SECRET="your-client-secret-here"Option 2: Use .env file
cp env.template .env
# Edit .env with your actual valuesThe server will automatically load variables from a .env file if it exists.
pip install -r requirements.txt# Create virtual environment
python3 -m venv .venv
# Activate virtual environment
source .venv/bin/activate
# Install dependencies
pip install -r requirements.txt
# Set environment variables
export ENTRA_TENANT_ID="..."
export ENTRA_CLIENT_ID="..."
export ENTRA_CLIENT_SECRET="..."
# Run the server
python main.pyServer will start on http://0.0.0.0:8001
# Build the image
docker build -t entra-mcp .
# Run the container with environment variables
docker run -p 8001:8001 \
-e ENTRA_TENANT_ID="..." \
-e ENTRA_CLIENT_ID="..." \
-e ENTRA_CLIENT_SECRET="..." \
entra-mcpSearch for users by display name, email, or user principal name.
Parameters:
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
query |
string | Yes | - | Search term for user name, email, or UPN (full-text $search with AND-tokenized terms) |
max_results |
integer | No | 10 | Maximum number of results to return |
Search Behavior:
- Full-text across
displayName,mail, anduserPrincipalNameusing Graph$search - Tokens are ANDed for better relevance (e.g., "Arun Singh" →
"Arun" AND "Singh"), matching order-agnostic names and middle names - Uses
ConsistencyLevel: eventualand$count=truefor accurate totals - Paginates across
@odata.nextLinkand returns up tomax_results
Example Usage:
# Order-agnostic and middle-name tolerant
search_entra_users(query="Arun Singh", max_results=25)
# Also matches comma-separated and compound names
search_entra_users(query="Singh, Arun", max_results=25)
# Email or UPN fragments are also matched by `$search`
search_entra_users(query="[email protected]")Search for groups by display name or description.
Parameters:
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
query |
string | Yes | - | Search term for group name or description (full-text $search with AND-tokenized terms) |
max_results |
integer | No | 10 | Maximum number of results to return |
Search Behavior:
- Full-text across
displayNameanddescriptionwith Graph$searchand AND-tokenized terms - Uses
ConsistencyLevel: eventualand$count=truefor accurate totals - Paginates across
@odata.nextLinkand returns up tomax_results
Get all groups a user belongs to.
Parameters:
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
user_identifier |
string | Yes | - | User ID, UPN, or email address |
Behavior:
- Resolves the user ID from email/UPN automatically when needed
- Uses
ConsistencyLevel: eventual,$count=true, and paginates across@odata.nextLink
Get all members of a group.
Parameters:
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
group_identifier |
string | Yes | - | Group ID or display name |
max_results |
integer | No | 50 | Maximum number of members to return |
Behavior:
- Uses
ConsistencyLevel: eventualand paginates across@odata.nextLink - Returns up to
max_resultsmembers
Find a user by their display name.
Default now suggests a broader search and higher limit to take advantage of $search:
# Suggests: Call search_entra_users with: query='{name}', max_results=25Find a user by their email address.
Find a group by name.
Check what groups a user belongs to.
List all members of a specific group.
Perform an access audit for a user.
Audit the membership of a security-sensitive group.
curl http://localhost:8001/health# Run all tests
python -m pytest tests/ -vstreamable-HTTP-Entra-MCP/
├── main.py # Main server with tools and authentication
├── promptz.py # Prompt templates for LLMs (7 prompts)
├── requirements.txt # Python dependencies
├── README.md # This file
└── tests/
├── __init__.py
└── test_main.py # Tests for main functionality
- The server requires Azure AD application permissions to read user and group data
- All API calls are authenticated using client credentials flow
- No user data is stored locally - all queries go directly to Microsoft Graph API
- Ensure your Azure AD app has minimal required permissions
ConsistencyLevel: eventualis required for$searchand$count$searchvalues are AND-tokenized to improve relevance and handle name order variations$count=trueis requested to return accurate totals- Results are paginated via
@odata.nextLinkuntil limits are reached
- 🔍 User Lookup: Find user information by name or email
- 👥 Group Discovery: Search for available groups
- 🔐 Access Control: Check user group memberships for permissions
- 📊 Audit & Compliance: Review group memberships and user access
- 🤖 AI Assistants: Enable LLMs to answer questions about Entra directory
Core:
fastmcp==2.13.0.1- FastMCP framework for MCP serverhttpx==0.28.1- Async HTTP clientazure-identity==1.19.0- Azure authenticationmsal==1.31.0- Microsoft Authentication Library
Development:
pytest==8.3.4- Testing frameworkpytest-asyncio==0.24.0- Async test support
This server uses the Microsoft Graph API:
- Base URL:
https://graph.microsoft.com/v1.0 - Authentication: Client Credentials Flow
- Scopes:
https://graph.microsoft.com/.default
# Check environment variables are set
echo $ENTRA_TENANT_ID $ENTRA_CLIENT_ID $ENTRA_CLIENT_SECRET
# Verify Azure AD app permissions in Azure Portal
# Ensure client secret is not expired# Install dependencies
pip install -r requirements.txt
# Verify Azure packages
pip list | grep azureSee LICENSE file for details.
Built with ❤️ using FastMCP and Microsoft Graph API