Skip to content

Merging Sorted Sequences #43

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 9 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
125 changes: 125 additions & 0 deletions Guides/MergeSorted.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
# Permutations
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
# Permutations
# MergeSorted


[[Source](../Sources/Algorithms/MergeSorted.swift) |
[Tests](../Tests/SwiftAlgorithmsTests/MergeSortedTests.swift)]

A method that returns the merger of the sorted receiver and the sorted argument,
or a subset of that merger. The result is also sorted, with the same criteria.

## Detailed Design

The `mergeSorted(with:keeping:by:)` method is declared as a `Sequence`
extension, and returns a standard `Array` of the same element type.

```swift
extension Sequence {
/// Returns an array listing the merger of this sequence and the given
/// sequence, but keeping only the selected subset, assuming both sources are
/// sorted according to the given predicate that can compare elements.
public func mergeSorted<S: Sequence>(
with second: S,
keeping selection: SetCombination,
by areInIncreasingOrder: (Element, Element) throws -> Bool
) rethrows -> [Element] where S.Element == Element
}
```

Besides the sequence that will be combined with the receiver and the predicate
to be used as the sorting criteria, the following subsets of the merged sequence
can be selected:

```swift
/// The manners two (multi)sets may be combined.
public enum SetCombination: CaseIterable {
case nothing, firstMinusSecond, secondMinusFirst, symmetricDifference,
intersection, first, second, union, sum
}
```

The `.sum` case is the usual merge sort. The `.nothing`, `.first`, `.second`
cases are somewhat degenerate and aren't generally used. The other cases are
the usual subsets. The difference between `.union` and `.sum` is that the
former generates mergers where common elements are included only once, while the
latter includes both copies of each shared value. When `.sum` is in place, the
copies from the second sequence go after all the copies from the first.

When the `Element` type is `Comparable`, the `mergeSorted(with:keeping:)` method
is added, which defaults the comparison predicate to the standard `<` operator:

```swift
extension Sequence where Element: Comparable {
/// Returns an array listing the merger of this sequence and the given
/// sequence, but keeping only the selected subset, and assuming both sources
/// are sorted.
public func mergeSorted<S: Sequence>(
with second: S,
keeping selection: SetCombination
) -> [Element] where S.Element == Element
}
```

If the ordering predicate does not throw, then the merged sequence may be
computed on-demand by making at least the receiver lazy:

```swift
extension LazySequenceProtocol {
/// Returns a lazy sequence listing the merger of this lazy sequence and the
/// given lazy sequence, but keeping only the selected subset, assuming both
/// sources are sorted according to the given predicate that can compare
/// elements.
public func mergeSorted<S: LazySequenceProtocol>(
with second: S,
keeping selection: SetCombination,
by areInIncreasingOrder: @escaping (Element, Element) -> Bool
) -> MergedSequence<Elements, S.Elements> where S.Element == Element

/// Returns a lazy sequence listing the merger of this lazy sequence and the
/// given sequence, but keeping only the selected subset, assuming both
/// sources are sorted according to the given predicate that can compare
/// elements.
public func mergeSorted<S: Sequence>(
with second: S,
keeping selection: SetCombination,
by areInIncreasingOrder: @escaping (Element, Element) -> Bool
) -> MergedSequence<Elements, S> where S.Element == Element
}

extension LazySequenceProtocol where Element: Comparable {
/// Returns a lazy sequence listing the merger of this lazy sequence and the
/// given lazy sequence, but keeping only the selected subset, and assuming
/// both sources are sorted.
public func mergeSorted<S: LazySequenceProtocol>(
with second: S,
keeping selection: SetCombination
) -> MergedSequence<Elements, S.Elements> where S.Element == Element

/// Returns a lazy sequence listing the merger of this lazy sequence and the
/// given sequence, but keeping only the selected subset, and assuming both
/// sources are sorted.
public func mergeSorted<S: Sequence>(
with second: S,
keeping selection: SetCombination
) -> MergedSequence<Elements, S> where S.Element == Element
}
```

If both source sequences also conform to (at least) `Collection`, then the
returned sequence representing the merger is also a collection.

### Complexity

Calling `mergeSorted(with:keeping:by:)` or `mergeSorted(with:keeping:)` is an
O(*n* + *m*) operation, where *n* and *m* are the lengths of the operand
sequences. Creating an iterator and/or lazy sequence is O(1), while iterating
through all of lazy sequence will be O(*n* + *m*). If the kept subset is one of
the degenerate cases, the complexity will be shorter.

### Comparison with other languages

**C++:** The `<algorithm>` library defines the `set_difference`,
`set_intersection`, `set_symmetric_difference`, `set_union`, and `merge`
functions. They can be all distilled into one algorithm, which the
`mergeSorted(with:keeping:by:)` method and its overloads do for Swift. The
`.firstMinusSecond` and `.secondMinusFirst` subsets are equivalent to calls to
`set_difference`; `.intersection` to `set_intersection`; `.symmetricDifference`
to `set_symmetric_difference`; `.union` to `set_union`; and `.sum` to `merge`.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -33,6 +33,7 @@ Read more about the package, and the intent behind it, in the [announcement on s
- [`chunked(by:)`, `chunked(on:)`](https://github.com/apple/swift-algorithms/blob/main/Guides/Chunked.md): Eager and lazy operations that break a collection into chunks based on either a binary predicate or when the result of a projection changes.
- [`indexed()`](https://github.com/apple/swift-algorithms/blob/main/Guides/Indexed.md): Iterate over tuples of a collection's indices and elements.
- [`trimming(where:)`](https://github.com/apple/swift-algorithms/blob/main/Guides/Trim.md): Returns a slice by trimming elements from a collection's start and end.
- [`mergeSorted(with:keeping:by:)`, `mergeSorted(with:keeping:)`](./Guides/MergeSorted.md): Eager and lazy operations that take another sequence, assume that both the given sequence and the receiver are sorted according to the given predicate (defaults to `<`), and returns the given subset of the sequences' merger (also sorted).


## Adding Swift Algorithms as a Dependency
959 changes: 959 additions & 0 deletions Sources/Algorithms/MergeSorted.swift

Large diffs are not rendered by default.

444 changes: 444 additions & 0 deletions Tests/SwiftAlgorithmsTests/MergeSortedTests.swift
Original file line number Diff line number Diff line change
@@ -0,0 +1,444 @@
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift Algorithms open source project
//
// Copyright (c) 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
//
//===----------------------------------------------------------------------===//

import XCTest
@testable import Algorithms

/// Unit tests for `SetCombination`, `MergedSequence`, and `mergedSorted`.
final class MergeSortedTests: XCTestCase {
/// Check the values and properties of `SetCollection`.
func testSelectionType() {
XCTAssertEqualSequences(SetCombination.allCases, [.nothing,
.firstMinusSecond, .secondMinusFirst, .symmetricDifference, .intersection,
.first, .second, .union, .sum
])

// Use a merged-sequence's iterator to spy on the properties.
// (The properties only depend on the case, not the source types nor the
// predicate.)
let iterators = SetCombination.allCases.map {
MergedSequence(EmptyCollection<Double>(), EmptyCollection<Double>(),
keeping: $0, by: <).makeIterator()
}
XCTAssertEqualSequences(iterators.map(\.exclusivesFromFirst),
[false, true, false, true, false, true, false, true, true])
XCTAssertEqualSequences(iterators.map(\.exclusivesFromSecond),
[false, false, true, true, false, false, true, true, true])
XCTAssertEqualSequences(iterators.map(\.sharedFromFirst),
[false, false, false, false, true, true, false, true, true])
XCTAssertEqualSequences(iterators.map(\.sharedFromSecond),
[false, false, false, false, false, false, true, false, true])
XCTAssertEqualSequences(iterators.map(\.extractFromFirst),
[false, true, true, true, true, true, false, true, true])
XCTAssertEqualSequences(iterators.map(\.extractFromSecond),
[false, true, true, true, true, false, true, true, true])
}

/// Check the rough underestimated counts.
func testUnderestimatedCount() {
let empty = EmptyCollection<Double>(), single = CollectionOfOne(1.1),
repeated = repeatElement(5.5, count: 5)
let emptySelfMergers = SetCombination.allCases.map {
MergedSequence(empty, empty, keeping: $0, by: <)
}
XCTAssertEqualSequences(emptySelfMergers.map(\.underestimatedCount), [
0, 0, 0, 0, 0, 0, 0, 0, 0
])

let emptySingleMergers = SetCombination.allCases.map {
MergedSequence(empty, single, keeping: $0, by: <)
}
XCTAssertEqualSequences(emptySingleMergers.map(\.underestimatedCount), [
0, 0, 0, 0, 0, 0, 1, 1, 1
])

let emptyRepeatedMergers = SetCombination.allCases.map {
MergedSequence(empty, repeated, keeping: $0, by: <)
}
XCTAssertEqualSequences(emptyRepeatedMergers.map(\.underestimatedCount), [
0, 0, 0, 0, 0, 0, 5, 5, 5
])

let singleEmptyMergers = SetCombination.allCases.map {
MergedSequence(single, empty, keeping: $0, by: <)
}
XCTAssertEqualSequences(singleEmptyMergers.map(\.underestimatedCount), [
0, 0, 0, 0, 0, 1, 0, 1, 1
])

let singleSelfMergers = SetCombination.allCases.map {
MergedSequence(single, single, keeping: $0, by: <)
}
XCTAssertEqualSequences(singleSelfMergers.map(\.underestimatedCount), [
0, 0, 0, 0, 0, 1, 1, 1, 2
])

let singleRepeatedMergers = SetCombination.allCases.map {
MergedSequence(single, repeated, keeping: $0, by: <)
}
XCTAssertEqualSequences(singleRepeatedMergers.map(\.underestimatedCount), [
0, 0, 0, 0, 0, 1, 5, 5, 6
])

let repeatedEmptyMergers = SetCombination.allCases.map {
MergedSequence(repeated, empty, keeping: $0, by: <)
}
XCTAssertEqualSequences(repeatedEmptyMergers.map(\.underestimatedCount), [
0, 0, 0, 0, 0, 5, 0, 5, 5
])

let repeatedSingleMergers = SetCombination.allCases.map {
MergedSequence(repeated, single, keeping: $0, by: <)
}
XCTAssertEqualSequences(repeatedSingleMergers.map(\.underestimatedCount), [
0, 0, 0, 0, 0, 5, 1, 5, 6
])

let repeatedSelfMergers = SetCombination.allCases.map {
MergedSequence(repeated, repeated, keeping: $0, by: <)
}
XCTAssertEqualSequences(repeatedSelfMergers.map(\.underestimatedCount), [
0, 0, 0, 0, 0, 5, 5, 5, 10
])
}

/// Check results from using empty operands, and using the generating methods.
func testEmpty() {
let empty = EmptyCollection<Double>()
let emptyMergerArrays = SetCombination.allCases.map {
empty.mergeSorted(with: empty, keeping: $0)
}
let emptyResults = Array(repeating: [Double](),
count: SetCombination.allCases.count)
XCTAssertEqualSequences(emptyMergerArrays, emptyResults)

// Call the lazy methods.
let emptyMergerSingleLazy = SetCombination.allCases.map {
empty.lazy.mergeSorted(with: empty, keeping: $0)
}
XCTAssertEqualSequences(emptyMergerSingleLazy.map(Array.init), emptyResults)

let emptyMergerDoubleLazy = SetCombination.allCases.map {
empty.lazy.mergeSorted(with: empty.lazy, keeping: $0)
}
XCTAssertEqualSequences(emptyMergerDoubleLazy.map(Array.init), emptyResults)

// Quick collection checks
XCTAssertEqualSequences(emptyMergerDoubleLazy.map(\.isEmpty), [
true, true, true, true, true, true, true, true, true
])
}

/// Check results from using one empty and one non-empty operand.
func testExactlyOneEmpty() {
let limit = Int.random(in: 1..<100), nonEmpty = 0..<limit,
nonEmptyArray = Array(nonEmpty), empty = EmptyCollection<Int>()
let nonEmptyVersusEmptyMergers = SetCombination.allCases.map {
MergedSequence(nonEmpty, empty, keeping: $0, by: <)
}
XCTAssertEqualSequences(nonEmptyVersusEmptyMergers.map(Array.init), [
[], nonEmptyArray, [], nonEmptyArray, [], nonEmptyArray, [],
nonEmptyArray, nonEmptyArray
])

let emptyVersusNonEmptyMergers = SetCombination.allCases.map {
MergedSequence(empty, nonEmpty, keeping: $0, by: <)
}
XCTAssertEqualSequences(emptyVersusNonEmptyMergers.map(Array.init), [
[], [], nonEmptyArray, nonEmptyArray, [], [], nonEmptyArray,
nonEmptyArray, nonEmptyArray
])
}

/// Check results on using the same nonempty sequence for both operands.
func testIdentical() {
let sample = Array(1..<Int.random(in: 3..<100))
let selfMergers = SetCombination.allCases.map {
MergedSequence(sample, sample, keeping: $0, by: <)
}
XCTAssertEqualSequences(selfMergers.map(Array.init), [
[], [], [], [], sample, sample, sample, sample,
Array(sample.map { Array(repeating: $0, count: 2) }.joined())
])
}

/// Check results when one nonempty sequence is a subset of a longer one.
func testProperSubset() {
let sample = Array(0...20), subSample = [2, 3, 5, 7, 11, 13, 17, 19],
inverted = [0, 1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20]
let sampleAndSubMergers = SetCombination.allCases.map {
MergedSequence(sample, subSample, keeping: $0, by: <)
}
let primeRepeatingSample = Array(sample.map {
Array(repeating: $0, count: $0.isPrime ? 2 : 1)
}.joined())

XCTAssertEqualSequences(sampleAndSubMergers.map(Array.init), [
[], inverted, [], inverted, subSample, sample, subSample, sample,
primeRepeatingSample
])

let subAndSampleMergers = SetCombination.allCases.map {
MergedSequence(subSample, sample, keeping: $0, by: <)
}
XCTAssertEqualSequences(subAndSampleMergers.map(Array.init), [
[], [], inverted, inverted, subSample, subSample, sample, sample,
primeRepeatingSample
])

// Originally, I had "sample" stop before 20, and 20 was left out of
// "inverted." This mean that "sample" ended on an element that was also
// part of "subSample." This lead to some lines of code in the iterator
// being missed.
}

/// Check results of two unrelated nonempty sequences.
func testDisjoint() {
let s1 = [2, 4, 6, 8, 10], s2 = [3, 5, 7, 9, 11], all = Array(2...11)
let sample1To2Merger = SetCombination.allCases.map {
MergedSequence(s1, s2, keeping: $0, by: <)
}
XCTAssertEqualSequences(sample1To2Merger.map(Array.init), [
[], s1, s2, all, [], s1, s2, all, all
])

let sample2To1Merger = SetCombination.allCases.map {
MergedSequence(s2, s1, keeping: $0, by: <)
}
XCTAssertEqualSequences(sample2To1Merger.map(Array.init), [
[], s2, s1, all, [], s2, s1, all, all
])
}

/// Check direct buffer access.
func testBufferAccess() {
let sample1 = [2, 2], sample2 = [3, 3, 3]
let sample1to2Mergers = SetCombination.allCases.map {
MergedSequence(sample1, sample2, keeping: $0, by: <)
}
XCTAssertEqualSequences(sample1to2Mergers.map { merger in
merger.withContiguousStorageIfAvailable { buffer in
buffer.reduce(0, +)
}
}, [0, nil, nil, nil, nil, 4, 9, nil, nil])

let sample2to1Mergers = SetCombination.allCases.map {
MergedSequence(sample2, sample1, keeping: $0, by: <)
}
XCTAssertEqualSequences(sample2to1Mergers.map { merger in
merger.withContiguousStorageIfAvailable { buffer in
buffer.reduce(0, +)
}
}, [0, nil, nil, nil, nil, 9, 4, nil, nil])
}

/// Check the containment implementation method, indirectly.
func testOptimizedContainment() {
// Both operands' type supports optimized containment tests.
let range1 = 0..<2, range2 = 1..<3
let range1to2Mergers = SetCombination.allCases.map {
MergedSequence(range1, range2, keeping: $0, by: <)
}
XCTAssertEqualSequences(range1to2Mergers.map { $0.contains(0) }, [
false, true, false, true, false, true, false, true, true
])
XCTAssertEqualSequences(range1to2Mergers.map { $0.contains(1) }, [
false, false, false, false, true, true, true, true, true
])
XCTAssertEqualSequences(range1to2Mergers.map { $0.contains(2) }, [
false, false, true, true, false, false, true, true, true
])
XCTAssertEqualSequences(range1to2Mergers.map { $0.contains(3) }, [
false, false, false, false, false, false, false, false, false
])

// Exactly one operand's type supports optimized containment tests.
let sample1 = Array(range1)
let sampleRangeMergers = SetCombination.allCases.map {
MergedSequence(sample1, range2, keeping: $0, by: <)
}
XCTAssertEqualSequences(sampleRangeMergers.map { $0.contains(0) }, [
false, true, false, true, false, true, false, true, true
])
XCTAssertEqualSequences(sampleRangeMergers.map { $0.contains(1) }, [
false, false, false, false, true, true, true, true, true
])
XCTAssertEqualSequences(sampleRangeMergers.map { $0.contains(2) }, [
false, false, true, true, false, false, true, true, true
])
XCTAssertEqualSequences(sampleRangeMergers.map { $0.contains(3) }, [
false, false, false, false, false, false, false, false, false
])

// Need to check both sides for the NIL-containment operand type.
let rangeSampleMergers = SetCombination.allCases.map {
MergedSequence(range2, sample1, keeping: $0, by: <)
}
XCTAssertEqualSequences(rangeSampleMergers.map { $0.contains(0) }, [
false, false, true, true, false, false, true, true, true
])
XCTAssertEqualSequences(rangeSampleMergers.map { $0.contains(1) }, [
false, false, false, false, true, true, true, true, true
])
XCTAssertEqualSequences(rangeSampleMergers.map { $0.contains(2) }, [
false, true, false, true, false, true, false, true, true
])
XCTAssertEqualSequences(rangeSampleMergers.map { $0.contains(3) }, [
false, false, false, false, false, false, false, false, false
])
}

/// Check every combination for the array-returning merger method.
func testMoreNonlazyMerging() {
let range1 = 0..<10, range2 = 5..<15
let range1to2Mergers = SetCombination.allCases.map {
range1.mergeSorted(with: range2, keeping: $0)
}
XCTAssertEqualSequences(range1to2Mergers, [
[],
[0, 1, 2, 3, 4],
[10, 11, 12, 13, 14],
[0, 1, 2, 3, 4, 10, 11, 12, 13, 14],
[5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14],
[0, 1, 2, 3, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 11, 12, 13, 14]
])
}

/// Check index iteration and dereferencing.
func testIndices() {
let range1 = 0..<10, range2 = 5...15
let range1to2Mergers = SetCombination.allCases.map {
(MergedCollection(range1, range2, keeping: $0, by: <),
range1.mergeSorted(with: range2, keeping: $0))
}
XCTAssertEqualSequences(range1to2Mergers.map(\.0.isEmpty),
range1to2Mergers.map(\.1.isEmpty))
XCTAssertEqualSequences(range1to2Mergers.map { doubleMerger in
doubleMerger.0.indices.map { doubleMerger.0[$0] }
}, range1to2Mergers.map(\.1))
XCTAssertEqualSequences(range1to2Mergers.map(\.0.iterationSteps
.underestimatedCount), [
0, 0, 0, 0, 0, 10, 11, 11, 21
])
XCTAssertEqualSequences(range1to2Mergers.map {
var i = $0.0.startIndex, result = [Int]()
result.reserveCapacity($0.0.underestimatedCount)
while i < $0.0.endIndex {
result.append($0.0[i])
$0.0.formIndex(after: &i)
}
return result
}, range1to2Mergers.map(\.1))

let range2to1Mergers = SetCombination.allCases.map {
(MergedCollection(range2, range1, keeping: $0, by: <),
range2.mergeSorted(with: range1, keeping: $0))
}
XCTAssertEqualSequences(range2to1Mergers.map { doubleMerger in
doubleMerger.0.indices.map { doubleMerger.0[$0] }
}, range2to1Mergers.map(\.1))
XCTAssertEqualSequences(range2to1Mergers.map(\.0.iterationSteps
.underestimatedCount), [
0, 0, 0, 0, 0, 11, 10, 11, 21
])
XCTAssertEqualSequences(range2to1Mergers.map {
var i = $0.0.startIndex, result = [Int]()
result.reserveCapacity($0.0.underestimatedCount)
while i < $0.0.endIndex {
result.append($0.0[i])
$0.0.formIndex(after: &i)
}
return result
}, range2to1Mergers.map(\.1))
}

/// Check the differences when elements from the first sequence are filtered
/// out versus the second.
func testPropertyOrdering() {
let sample1 = [0, 2, 4, 6, 8, 10, 12].map { ($0, true) }
let sample2 = [0, 3, 6, 9, 12].map { ($0, false) }
let sample1to2Mergers = SetCombination.allCases.map {
MergedSequence(sample1, sample2, keeping: $0, by: { x, y in x.0 < y.0 })
}
XCTAssertEqualSequences(sample1to2Mergers.map { $0.map(\.0) }, [
[],
[2, 4, 8, 10],
[3, 9],
[2, 3, 4, 8, 9, 10],
[0, 6, 12],
[0, 2, 4, 6, 8, 10, 12],
[0, 3, 6, 9, 12],
[0, 2, 3, 4, 6, 8, 9, 10, 12],
[0, 0, 2, 3, 4, 6, 6, 8, 9, 10, 12, 12]
])
XCTAssertEqualSequences(sample1to2Mergers.map { $0.map(\.1) }, [
[],
[true, true, true, true],
[false, false],
[true, false, true, true, false, true],
[true, true, true],
[true, true, true, true, true, true, true],
[false, false, false, false, false],
[true, true, false, true, true, true, false, true, true],
[true, false, true, false, true, true, false, true, false, true, true,
false]
])

let sample2to1Mergers = SetCombination.allCases.map {
MergedSequence(sample2, sample1, keeping: $0, by: { x, y in x.0 < y.0 })
}
XCTAssertEqualSequences(sample2to1Mergers.map { $0.map(\.0) }, [
[],
[3, 9],
[2, 4, 8, 10],
[2, 3, 4, 8, 9, 10],
[0, 6, 12],
[0, 3, 6, 9, 12],
[0, 2, 4, 6, 8, 10, 12],
[0, 2, 3, 4, 6, 8, 9, 10, 12],
[0, 0, 2, 3, 4, 6, 6, 8, 9, 10, 12, 12]
])
XCTAssertEqualSequences(sample2to1Mergers.map { $0.map(\.1) }, [
[],
[false, false],
[true, true, true, true],
[true, false, true, true, false, true],
[false, false, false],
[false, false, false, false, false],
[true, true, true, true, true, true, true],
[false, true, false, true, false, true, false, true, false],
[false, true, true, false, true, false, true, true, false, true, false,
true]
])
}
}

//-----------------------------------------------------------------------------/

extension FixedWidthInteger {
/// Confirms if this value is prime, but slowly.
fileprivate var isPrime: Bool {
guard self >= 2 else { return false }
guard self >= 4 else { return true }

for divisor in 2..<self {
let (quotient, remainder) = quotientAndRemainder(dividingBy: divisor)
guard remainder != 0 else { return false }
guard quotient > divisor else { break }

// The guards above cover everything.
}
return true
}
}