-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e5dec11
commit 60a2baf
Showing
1 changed file
with
254 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,254 @@ | ||
from fastapi import FastAPI, HTTPException, Request, Form | ||
from fastapi.responses import JSONResponse, HTMLResponse | ||
from pydantic import BaseModel | ||
from fastapi.templating import Jinja2Templates | ||
from fastapi.responses import RedirectResponse | ||
|
||
from dotenv import load_dotenv | ||
|
||
import os | ||
|
||
from langchain_community.vectorstores import Chroma | ||
from langchain_community.document_loaders import WebBaseLoader | ||
|
||
from langchain.text_splitter import RecursiveCharacterTextSplitter | ||
from langchain_openai import OpenAIEmbeddings, ChatOpenAI | ||
|
||
from langchain.prompts import ChatPromptTemplate | ||
from langchain_core.output_parsers import StrOutputParser | ||
from langchain_core.runnables import RunnablePassthrough | ||
|
||
import chromadb | ||
|
||
|
||
app = FastAPI() | ||
load_dotenv() | ||
|
||
templates = Jinja2Templates(directory="templates") | ||
|
||
|
||
CHUNK_SIZE = 300 | ||
CHUNK_OVERLAP = 75 | ||
OPENAI_API_KEY = os.environ['OPENAI_API_KEY'] | ||
|
||
|
||
class Wiki(BaseModel): | ||
wiki_url : str | ||
|
||
|
||
def load_wiki_article(url: str): | ||
try: | ||
loader = WebBaseLoader( | ||
web_path=url | ||
) | ||
docs = loader.load() | ||
print("Wiki Loaded Successfuly") | ||
except Exception as e: | ||
raise Exception(e) | ||
|
||
return docs | ||
|
||
def wiki_text_splitter(docs): | ||
|
||
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder( | ||
chunk_size=CHUNK_SIZE, | ||
chunk_overlap=CHUNK_OVERLAP) | ||
|
||
# Make splits | ||
splits = text_splitter.split_documents(docs) | ||
|
||
return splits | ||
|
||
async def create_db(splits): | ||
|
||
chroma_instance = Chroma(persist_directory='db/') | ||
delete_db_documents(chroma_instance) | ||
|
||
vectorstore = Chroma.from_documents(documents=splits, | ||
embedding=OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY), | ||
persist_directory='db/') | ||
#collection_metadata={"hnsw:M": 2024,"hnsw:ef": 500} | ||
|
||
async def get_retriever(): | ||
# load chroma db | ||
chroma_instance = Chroma(persist_directory='db/', embedding_function=OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)) | ||
retriever = chroma_instance.as_retriever() | ||
|
||
return retriever | ||
|
||
|
||
def delete_db_documents(chroma_instance): | ||
|
||
chroma_db = chromadb.PersistentClient('db/') | ||
chroma_db.reset() | ||
|
||
# ids = chroma_instance.get()['ids'] | ||
# if len(ids) > 0: | ||
|
||
# print("count before", chroma_instance._collection.count()) | ||
# chroma_instance._collection.delete(ids=ids) | ||
# print("count after", chroma_instance._collection.count()) | ||
|
||
|
||
@app.get("/", response_class=HTMLResponse) | ||
def read_form(request: Request): | ||
return templates.TemplateResponse("index.html", {"request": request}) | ||
|
||
@app.post("/send", response_class=HTMLResponse) | ||
async def read_wiki_url(request: Request, wiki: Wiki): | ||
|
||
url = wiki.wiki_url | ||
error_message = "" | ||
docs = load_wiki_article(url) | ||
splits = wiki_text_splitter(docs) | ||
await create_db(splits) | ||
#print('Finished execution') | ||
|
||
|
||
return templates.TemplateResponse("chat.html", {"request": request}) | ||
|
||
# try: | ||
|
||
# # docs = load_wiki_article(url) | ||
# # splits = wiki_text_splitter(docs) | ||
# # await create_db(splits) | ||
# print('Finished execution') | ||
# #return templates.TemplateResponse("chat.html", {"request": request}) | ||
# return RedirectResponse(url="/chat") | ||
|
||
# except Exception as e: | ||
# rerror_message = str(e) | ||
# print(error_message) | ||
# return templates.TemplateResponse("index.html", {"request": request, "error_message": error_message}) | ||
|
||
|
||
@app.get("/chat", response_class=HTMLResponse) | ||
async def chat(request: Request): | ||
# Add any necessary context variables to the context dictionary | ||
print("Chat endpoint reached") | ||
context = {"request": request} | ||
return templates.TemplateResponse("chat.html", context) | ||
|
||
|
||
|
||
@app.post("/chat", response_class=HTMLResponse) | ||
async def ask_respond(request: Request): | ||
|
||
request_body = await request.json() | ||
|
||
# Access the value of the "question" field from the request body | ||
user_question = request_body.get("question") | ||
|
||
retriever = await get_retriever() | ||
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.7) | ||
|
||
template = """Answer the question based only on the following context: | ||
{context} and when you dont know the answer say I dont have information about AND MENTION WHAT THE USER AKED YOU ABOUT | ||
but you can be kind for example when people are greeting you | ||
Question: {question} | ||
""" | ||
# template = """Answer the question based only on the following context: | ||
# {context} | ||
# Refer to the {history} of the conversation -if available- to better understand the question | ||
|
||
# Question: {question} | ||
# """ | ||
prompt = ChatPromptTemplate.from_template(template) | ||
|
||
rag_chain = ( | ||
{"context": retriever, "question": RunnablePassthrough()} | ||
| prompt | ||
| llm | ||
| StrOutputParser() | ||
) | ||
print("human_question:", user_question) | ||
answer = rag_chain.invoke(user_question) | ||
|
||
print("ai_answer:", answer) | ||
|
||
return JSONResponse(content={"answer": answer}) | ||
|
||
|
||
|
||
|
||
|
||
# def x(): | ||
# from langchain.chains import create_retrieval_chain | ||
# from langchain.chains.combine_documents import create_stuff_documents_chain | ||
|
||
# qa_system_prompt = """You are an assistant for question-answering tasks. \ | ||
# Use the following pieces of retrieved context to answer the question. \ | ||
# If you don't know the answer, just say that you don't know. \ | ||
# Use three sentences maximum and keep the answer concise.\ | ||
|
||
# {context}""" | ||
# qa_prompt = ChatPromptTemplate.from_messages( | ||
# [ | ||
# ("system", qa_system_prompt), | ||
# MessagesPlaceholder("chat_history"), | ||
# ("human", "{input}"), | ||
# ] | ||
# ) | ||
# question_answer_chain = create_stuff_documents_chain(llm, qa_prompt) | ||
|
||
# rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain) | ||
|
||
|
||
|
||
|
||
#%% | ||
# from langchain_openai import OpenAIEmbeddings | ||
# from langchain_community.vectorstores import Chroma | ||
# from langchain_openai import ChatOpenAI | ||
# from langchain.prompts import ChatPromptTemplate | ||
# import os | ||
# OPENAI_API_KEY = os.environ['OPENAI_API_KEY'] | ||
# # Initialize Chroma with the saved database | ||
# chroma_instance = Chroma(persist_directory='.', embedding_function=OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)) | ||
|
||
|
||
# # %% | ||
# ids = chroma_instance.get()['ids'] | ||
# print("count before", chroma_instance._collection.count()) | ||
|
||
|
||
# #chroma_instance._collection.delete(ids=ids) | ||
# print("count after", chroma_instance._collection.count()) | ||
# # %% | ||
# import chromadb | ||
|
||
# chroma_db = chromadb.PersistentClient('.') | ||
# chroma_db.reset() | ||
|
||
# chroma_db.delete_collection('langchain') | ||
|
||
|
||
|
||
#%% | ||
|
||
# # Prompt | ||
# template = """Answer the question based only on the following context: | ||
# {context} and when you dont know the answer say 'Sorry I can't answer that' | ||
|
||
# Question: {question} | ||
# """ | ||
|
||
# prompt = ChatPromptTemplate.from_template(template) | ||
# prompt | ||
|
||
# retriever = chroma_instance.as_retriever() | ||
# llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0) | ||
|
||
# from langchain_core.output_parsers import StrOutputParser | ||
# from langchain_core.runnables import RunnablePassthrough | ||
|
||
# rag_chain = ( | ||
# {"context": retriever, "question": RunnablePassthrough()} | ||
# | prompt | ||
# | llm | ||
# | StrOutputParser() | ||
# ) | ||
|
||
# rag_chain.invoke("who founded vodafone?") | ||
# %% |