-
clone this repo
-
rename example.env to .env
-
set environment variables in .env file
- OPENAI_API_KEY from https://platform.openai.com/account/api-keys
- Azure OpenAI Service Settings from Azure OpenAI https://portal.azure.com
- AZURE_OPENAI_KEY
- AZURE_OPENAI_ENDPOINT
- AZURE_OPENAI_DEPLOYMENT_NAME
- GOOGLE_PALM_AI_API_KEY from https://makersuite.google.com
- LLaMA-2 Together API
- TOGETHER_API_KEY from https://api.together.xyz/playground,
- Start LLaMA-2 Chat (70B)
- Vertex AI
- GOOGLE_PROJECT_ID from Google Cloud console, refer to this https://cloud.google.com/vertex-ai/docs/start/cloud-environment
- In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
- Go to project selector
- Make sure billing is enabled for your Google Cloud project.
- Enable the Vertex AI API
- Add GCP Credential file as gcp-cred.json for Vertex AI, IAM -> Service accounts -> An account -> Keys from https://console.cloud.google.com/iam-admin/serviceaccounts.
-
for running individual Python programs, use this
Installation
pip install -r requirements.txt
python text-completion.py
python text-completion-azure.py
python text-completion-together-api-llama.py
python text-completion-vertex-ai.py
or use these notebooks
Further, simplify using LangChain or Semantic Kernel
ChatGPT Plugin
More comprehensive demos are available on LLM Scenarios, Use cases on the Gradio app