Skip to content

adibka/RIZE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RIZE: Adaptive Regularization for Imitation Learning

Paper: TMLR 2025 | arXiv


RIZE is a novel IRL method with adaptive reward bounds and distributional critics, achieving expert-level performance on MuJoCo and Adroit tasks using only 3–10 expert demonstrations. It outperforms IQ-Learn, LSIQ, SQIL, CSIL, and BC—especially on high-DoF tasks like Humanoid-v2 and Hammer-v1. See the project page for results, and visuals.


Installation

  1. Clone the repository

    git clone https://github.com/adibka/RIZE.git
    cd RIZE
  2. Create an environment (Python 3.10)

    python3 -m venv venvs/rize
    source venvs/rize/bin/activate
  3. Install mujoco-py

    Note: mujoco-py==2.0.2.0 requires MuJoCo version 2.0 binaries. Follow the guide at mujoco-py docs if needed.

    mkdir -p ~/.mujoco && cd ~/.mujoco
    curl -O https://www.roboti.us/download/mujoco200_linux.zip
    curl -O https://www.roboti.us/file/mjkey.txt
    unzip mujoco200_linux.zip
    mv mujoco200_linux mujoco200
    rm mujoco200_linux.zip

    Add to ~/.bashrc (replace {user-name} with your actual username):

    echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/{user-name}/.mujoco/mujoco200/bin' >> ~/.bashrc
    source ~/.bashrc
  4. Install dependencies

    pip install -r requirements.txt

    Note: requirements.txt pins tested versions (including mujoco-py, gym, gymnasium, mujoco). Verified on Ubuntu 22.04 + Python 3.10.


Expert Demonstrations

Download pre-generated expert trajectories:

cd RIZE
./download_experts.sh

Training

Run training with a single command. Hyperparameters are detailed in the paper appendix (Table 1).

python main.py --env halfcheetah --demos 10 --seed 0

Replace --env with any supported task:
halfcheetah, walker2d, ant, humanoid, hopper, hammer


Citation

@article{karimi2025rize,
  title={RIZE: Adaptive Regularization for Imitation Learning},
  author={Karimi, Adib and Ebadzadeh, Mohammad Mehdi},
  journal={Transactions on Machine Learning Research},
  year={2025},
  url={https://openreview.net/forum?id=a6DWqXJZCZ}
}

About

"RIZE: Adaptive Regularization for Imitation Learning"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published