Skip to content

The most powerful local music generation model that outperforms most commercial alternatives

License

Notifications You must be signed in to change notification settings

ace-step/ACE-Step-1.5

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

440 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

ACE-Step 1.5

Pushing the Boundaries of Open-Source Music Generation

Project | Hugging Face | ModelScope | Space Demo | Discord | Technical Report

StepFun Logo

Table of Contents

๐Ÿ“ Abstract

๐Ÿš€ We present ACE-Step v1.5, a highly efficient open-source music foundation model that brings commercial-grade generation to consumer hardware. On commonly used evaluation metrics, ACE-Step v1.5 achieves quality beyond most commercial music models while remaining extremely fastโ€”under 2 seconds per full song on an A100 and under 10 seconds on an RTX 3090. The model runs locally with less than 4GB of VRAM, and supports lightweight personalization: users can train a LoRA from just a few songs to capture their own style.

๐ŸŒ‰ At its core lies a novel hybrid architecture where the Language Model (LM) functions as an omni-capable planner: it transforms simple user queries into comprehensive song blueprintsโ€”scaling from short loops to 10-minute compositionsโ€”while synthesizing metadata, lyrics, and captions via Chain-of-Thought to guide the Diffusion Transformer (DiT). โšก Uniquely, this alignment is achieved through intrinsic reinforcement learning relying solely on the model's internal mechanisms, thereby eliminating the biases inherent in external reward models or human preferences. ๐ŸŽš๏ธ

๐Ÿ”ฎ Beyond standard synthesis, ACE-Step v1.5 unifies precise stylistic control with versatile editing capabilitiesโ€”such as cover generation, repainting, and vocal-to-BGM conversionโ€”while maintaining strict adherence to prompts across 50+ languages. This paves the way for powerful tools that seamlessly integrate into the creative workflows of music artists, producers, and content creators. ๐ŸŽธ

โœจ Features

ACE-Step Framework

โšก Performance

  • โœ… Ultra-Fast Generation โ€” Under 2s per full song on A100, under 10s on RTX 3090 (0.5s to 10s on A100 depending on think mode & diffusion steps)
  • โœ… Flexible Duration โ€” Supports 10 seconds to 10 minutes (600s) audio generation
  • โœ… Batch Generation โ€” Generate up to 8 songs simultaneously

๐ŸŽต Generation Quality

  • โœ… Commercial-Grade Output โ€” Quality beyond most commercial music models (between Suno v4.5 and Suno v5)
  • โœ… Rich Style Support โ€” 1000+ instruments and styles with fine-grained timbre description
  • โœ… Multi-Language Lyrics โ€” Supports 50+ languages with lyrics prompt for structure & style control

๐ŸŽ›๏ธ Versatility & Control

Feature Description
โœ… Reference Audio Input Use reference audio to guide generation style
โœ… Cover Generation Create covers from existing audio
โœ… Repaint & Edit Selective local audio editing and regeneration
โœ… Track Separation Separate audio into individual stems
โœ… Multi-Track Generation Add layers like Suno Studio's "Add Layer" feature
โœ… Vocal2BGM Auto-generate accompaniment for vocal tracks
โœ… Metadata Control Control duration, BPM, key/scale, time signature
โœ… Simple Mode Generate full songs from simple descriptions
โœ… Query Rewriting Auto LM expansion of tags and lyrics
โœ… Audio Understanding Extract BPM, key/scale, time signature & caption from audio
โœ… LRC Generation Auto-generate lyric timestamps for generated music
โœ… LoRA Training One-click annotation & training in Gradio. 8 songs, 1 hour on 3090 (12GB VRAM)
โœ… Quality Scoring Automatic quality assessment for generated audio

Staying ahead


Star ACE-Step on GitHub and be instantly notified of new releases

โšก Quick Start

Requirements: Python 3.11+, CUDA GPU recommended (also supports MPS / ROCm / Intel XPU / CPU)

# 1. Install uv
curl -LsSf https://astral.sh/uv/install.sh | sh          # macOS / Linux
# powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"  # Windows

# 2. Clone & install
git clone https://github.com/ACE-Step/ACE-Step-1.5.git
cd ACE-Step-1.5
uv sync

# 3. Launch Gradio UI (models auto-download on first run)
uv run acestep

# Or launch REST API server
uv run acestep-api

Open http://localhost:7860 (Gradio) or http://localhost:8001 (API).

๐Ÿ“ฆ Windows users: A portable package with pre-installed dependencies is available. See Installation Guide.

๐Ÿ“– Full installation guide (AMD/ROCm, Intel GPU, CPU, environment variables, command-line options): English | ไธญๆ–‡ | ๆ—ฅๆœฌ่ชž

๐Ÿ’ก Which Model Should I Choose?

Your GPU VRAM Recommended LM Model Notes
โ‰ค6GB None (DiT only) LM disabled by default to save memory
6-12GB acestep-5Hz-lm-0.6B Lightweight, good balance
12-16GB acestep-5Hz-lm-1.7B Better quality
โ‰ฅ16GB acestep-5Hz-lm-4B Best quality and audio understanding

๐Ÿ“– GPU compatibility details: English | ไธญๆ–‡ | ๆ—ฅๆœฌ่ชž

๐Ÿš€ Launch Scripts

Ready-to-use launch scripts for all platforms with auto environment detection, update checking, and dependency installation.

Platform Scripts Backend
Windows start_gradio_ui.bat, start_api_server.bat CUDA
Windows (ROCm) start_gradio_ui_rocm.bat, start_api_server_rocm.bat AMD ROCm
Linux start_gradio_ui.sh, start_api_server.sh CUDA
macOS start_gradio_ui_macos.sh, start_api_server_macos.sh MLX (Apple Silicon)
# Windows
start_gradio_ui.bat

# Linux
chmod +x start_gradio_ui.sh && ./start_gradio_ui.sh

# macOS (Apple Silicon)
chmod +x start_gradio_ui_macos.sh && ./start_gradio_ui_macos.sh

๐Ÿ“– Script configuration & customization: English | ไธญๆ–‡ | ๆ—ฅๆœฌ่ชž

๐Ÿ“š Documentation

Usage Guides

Method Description Documentation
๐Ÿ–ฅ๏ธ Gradio Web UI Interactive web interface for music generation Guide
๐ŸŽš๏ธ Studio UI Optional HTML frontend (DAW-like) Guide
๐Ÿ Python API Programmatic access for integration Guide
๐ŸŒ REST API HTTP-based async API for services Guide
โŒจ๏ธ CLI Interactive wizard and configuration Guide

Setup & Configuration

Topic Documentation
๐Ÿ“ฆ Installation (all platforms) English | ไธญๆ–‡ | ๆ—ฅๆœฌ่ชž
๐ŸŽฎ GPU Compatibility English | ไธญๆ–‡ | ๆ—ฅๆœฌ่ชž
๐Ÿ”ง GPU Troubleshooting English
๐Ÿ”ฌ Benchmark & Profiling English | ไธญๆ–‡

Multi-Language Docs

Language API Gradio Inference Tutorial Install Benchmark
๐Ÿ‡บ๐Ÿ‡ธ English Link Link Link Link Link Link
๐Ÿ‡จ๐Ÿ‡ณ ไธญๆ–‡ Link Link Link Link Link Link
๐Ÿ‡ฏ๐Ÿ‡ต ๆ—ฅๆœฌ่ชž Link Link Link Link Link โ€”
๐Ÿ‡ฐ๐Ÿ‡ท ํ•œ๊ตญ์–ด Link Link Link Link โ€” โ€”

๐Ÿ“– Tutorial

๐ŸŽฏ Must Read: Comprehensive guide to ACE-Step 1.5's design philosophy and usage methods.

Language Link
๐Ÿ‡บ๐Ÿ‡ธ English English Tutorial
๐Ÿ‡จ๐Ÿ‡ณ ไธญๆ–‡ ไธญๆ–‡ๆ•™็จ‹
๐Ÿ‡ฏ๐Ÿ‡ต ๆ—ฅๆœฌ่ชž ๆ—ฅๆœฌ่ชžใƒใƒฅใƒผใƒˆใƒชใ‚ขใƒซ

This tutorial covers: mental models and design philosophy, model architecture and selection, input control (text and audio), inference hyperparameters, random factors and optimization strategies.

๐Ÿ”จ Train

See the LoRA Training tab in Gradio UI for one-click training, or check Gradio Guide - LoRA Training for details.

๐Ÿ—๏ธ Architecture

ACE-Step Framework

๐Ÿฆ Model Zoo

Model Zoo

DiT Models

DiT Model Pre-Training SFT RL CFG Step Refer audio Text2Music Cover Repaint Extract Lego Complete Quality Diversity Fine-Tunability Hugging Face
acestep-v15-base โœ… โŒ โŒ โœ… 50 โœ… โœ… โœ… โœ… โœ… โœ… โœ… Medium High Easy Link
acestep-v15-sft โœ… โœ… โŒ โœ… 50 โœ… โœ… โœ… โœ… โŒ โŒ โŒ High Medium Easy Link
acestep-v15-turbo โœ… โœ… โŒ โŒ 8 โœ… โœ… โœ… โœ… โŒ โŒ โŒ Very High Medium Medium Link
acestep-v15-turbo-rl โœ… โœ… โœ… โŒ 8 โœ… โœ… โœ… โœ… โŒ โŒ โŒ Very High Medium Medium To be released

LM Models

LM Model Pretrain from Pre-Training SFT RL CoT metas Query rewrite Audio Understanding Composition Capability Copy Melody Hugging Face
acestep-5Hz-lm-0.6B Qwen3-0.6B โœ… โœ… โœ… โœ… โœ… Medium Medium Weak โœ…
acestep-5Hz-lm-1.7B Qwen3-1.7B โœ… โœ… โœ… โœ… โœ… Medium Medium Medium โœ…
acestep-5Hz-lm-4B Qwen3-4B โœ… โœ… โœ… โœ… โœ… Strong Strong Strong โœ…

๐Ÿ”ฌ Benchmark

ACE-Step 1.5 includes profile_inference.py, a profiling & benchmarking tool that measures LLM, DiT, and VAE timing across devices and configurations.

python profile_inference.py                        # Single-run profile
python profile_inference.py --mode benchmark       # Configuration matrix

๐Ÿ“– Full guide (all modes, CLI options, output interpretation): English | ไธญๆ–‡

๐Ÿ“œ License & Disclaimer

This project is licensed under MIT

ACE-Step enables original music generation across diverse genres, with applications in creative production, education, and entertainment. While designed to support positive and artistic use cases, we acknowledge potential risks such as unintentional copyright infringement due to stylistic similarity, inappropriate blending of cultural elements, and misuse for generating harmful content. To ensure responsible use, we encourage users to verify the originality of generated works, clearly disclose AI involvement, and obtain appropriate permissions when adapting protected styles or materials. By using ACE-Step, you agree to uphold these principles and respect artistic integrity, cultural diversity, and legal compliance. The authors are not responsible for any misuse of the model, including but not limited to copyright violations, cultural insensitivity, or the generation of harmful content.

๐Ÿ”” Important Notice
The only official website for the ACE-Step project is our GitHub Pages site.
We do not operate any other websites.
๐Ÿšซ Fake domains include but are not limited to: ac**p.com, a**p.org, a***c.org
โš ๏ธ Please be cautious. Do not visit, trust, or make payments on any of those sites.

๐Ÿ™ Acknowledgements

This project is co-led by ACE Studio and StepFun.

๐Ÿ“– Citation

If you find this project useful for your research, please consider citing:

@misc{gong2026acestep,
	title={ACE-Step 1.5: Pushing the Boundaries of Open-Source Music Generation},
	author={Junmin Gong, Yulin Song, Wenxiao Zhao, Sen Wang, Shengyuan Xu, Jing Guo}, 
	howpublished={\url{https://github.com/ace-step/ACE-Step-1.5}},
	year={2026},
	note={GitHub repository}
}

About

The most powerful local music generation model that outperforms most commercial alternatives

Resources

License

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published