This repository contains the FragAttacks tool. It can test Wi-Fi clients and access points for fragmentation and aggregation attacks. These vulnerabilities affect all protected Wi-Fi networks. For more information about these vulnerabilities see fragattacks.com.
The following additional resources are available:
- The USENIX Security presentation gives a summary of the discovered vulnerabilities.
- An overview of all assigned CVEs is available.
- Slides that summarize the root cause and impact of each vulnerability.
- A 2-page summary of resulting attacks and preconditions.
- Handouts that give extra background and explain the vulnerabilities in more detail.
- A demonstration of three example attacks.
- The research paper published at USENIX Security.
- Example network captures illustrating some of the vulnerabilities.
- A live USB image with this tool and modified drivers pre-installed.
- A list of known advisories from companies
See the change log for a detailed overview of updates to the tool made since 11 August 2020. This change log also contains information on which version of hostap the FragAttacks tool is based on.
Note that the attacks are identical against WPA2 and WPA3 because their CCMP and GCMP encryption ciphers are identical. Older WPA networks by default use TKIP for encryption, and the applicability of the attacks against TKIP are discussed in the paper and on the website. To illustrate that Wi-Fi has been vulnerable since its creation, the paper and website also briefly discusses the applicability of the attacks against WEP.
Only specific wireless network cards are supported. This is because some network cards may overwrite the sequence or fragment number of injected frames, or may reorder frames of different priority, and this interferes with the test tool (i.e. the tool might say a device is secure although it's not). I have confirmed that the following network cards work properly:
Network Card | USB | 5GHz | mixed mode | injection mode |
---|---|---|---|---|
Technoethical N150 HGA | Yes | No | patched driver/firmware | patched driver/firmware |
TP-Link TL-WN722N v1.x | Yes | No | patched driver/firmware | patched driver/firmware |
Alfa AWUS036NHA | Yes | No | patched driver/firmware | patched driver/firmware |
Intel Wireless-AC 8265 | No | Yes | patched driver | yes |
Intel Wireless-AC 3160 | No | Yes | patched driver | yes |
Alfa AWUS036ACM | Yes | Yes | patched driver | yes |
Netgear WN111v2 | Yes | No | patched driver | yes |
Alfa AWUS036ACH | Yes | Yes | no | yes |
The three two colums signify:
-
Mixed mode: whether the network card can be used in the recommended mixed mode.
-
Injection mode: whether the network card can be used as a second interface to inject frames in injection mode.
Yes indicates the card works out-of-the-box in the given mode. Patched driver/firmware means that the card is compatible when used with patched drivers and/or firmware. No means this mode is not supported by the network card. I recommend using the test tool in mixed mode.
Note that USB devices can be used inside a virtual machine, and the modified drivers and/or firmware can be installed in this virtual machine. However, I found that the usage of virtual machines can make network cards less reliable, and I instead recommend the usage of a live USB image if you cannot install the modified drivers/firmware natively.
My experience with the above network cards can be found here. Summarized:
-
I recommend the Technoethical N150 HGA in mixed mode. This device is identical to the TP-Link TL-WN722N v1.x and requires the usage of patched drivers and firmware.
-
The Intel 3160 and 8265 are supported and extensively tested. Sometimes their firmware crashed but a reboot makes the network card usable again. The Intel AX200 is not compatible with the test tool.
-
During my tests the AWUS036ACM dongle was unreliable when connected to a USB3.0 port, but worked well when connected to a USB2.0 port. This behaviour may depend on your computer.
-
The WN111v2 seems to work well, although I did not test it extensively.
-
The driver for the AWUS036ACH is not part of the Linux kernel and requires the installation of a separate driver. On Kali you can install this driver through the package manager. This card was not extensivly tested.
If you are unable to find one of the above network cards, you can search for alternative network cards that have a high chance of also working. When using a network card that is not explicitly supported I strongly recommend to first run the injection tests before using it, and using the tool against a known-vulnerable implementation to confirm the tool works properly.
The test tool was tested on Kali Linux and Ubuntu 20.04. To install the required dependencies, execute:
# Kali Linux and Ubuntu:
sudo apt-get update
sudo apt-get install libnl-3-dev libnl-genl-3-dev libnl-route-3-dev libssl-dev \
libdbus-1-dev git pkg-config build-essential macchanger net-tools python3-venv \
aircrack-ng rfkill
# Kali Linux:
sudo apt-get install firmware-atheros
# Ubuntu/Debian:
sudo apt-get install firmware-ath9k-htc
Now clone this repository, build the tools, and configure a virtual python3 environment:
git clone https://github.com/vanhoefm/fragattacks.git fragattacks
cd fragattacks/research
./build.sh
./pysetup.sh
The above instructions only have to be executed once. After pulling in new code using git you do
have to execute ./build.sh
and ./pysetup.sh
again.
Install patched drivers using:
sudo apt-get install bison flex linux-headers-$(uname -r)
git clone https://github.com/vanhoefm/fragattacks-drivers58.git fragattacks-drivers58
cd fragattacks-drivers58
make defconfig-wifi
make -j 4
sudo make install
This compiles the drivers for most network cards supported by Linux. If you only want to compile
the drivers for network cards I explicitly tested, use make defconfig-experiments
instead.
During the install command you may get several warnings containing .. needs unknown symbol ..
. You can
ignore these warning as long they do not contain the directory /lib/modules/*/updates/
and the
compiled drivers are working.
Now install patched ath9k_htc
firmware:
cd research/ath9k-firmware/
./install.sh
# Now reboot
The ./install.sh
script assumes the ath9k_htc
firmware images are located in the
directory /lib/firmware/ath9k_htc
. If this is not the case on your system you have
to manually copy htc_7010.fw
and htc_9271.fw
to the appropriate directory.
After installing the patched drivers and firmware you must unplug your Wi-Fi dongles and reboot your system. The above instructions have to be executed again if your Linux kernel gets updated or if the patched drivers get updated.
Note that even when your device works out of the box, I still recommend to install the modified drivers, as this assures there are no unexpected regressions in kernel and driver code.
In case you cannot install the modified drivers/firmware natively, you can download a live USB image that contains the modified drivers/firmware along with our test tool. Alternatively, you can use a virtual machine with USB network cards, although I found that using a virtual machine is less reliable in pratice.
Every time you want to use the test tool, you first have to load the virtual python environment as root. This can be done using:
cd research
sudo su
source venv/bin/activate
You should now disable Wi-Fi in your network manager so it will not interfere with the test tool.
Also make sure no other network services are causing outgoing traffic. You can assure this by
using iptables to block traffic by executing ./droptraffic.sh
(you can revert this by rebooting).
Optionally check using sudo airmon-ng check
to see which other processes might be using the
wireless network card and might interfere with our tool.
The test tool can test both clients and APs:
-
Testing APs: configure the AP you want to test by editing
research/client.conf
. This is a standardwpa_supplicant
configuration file, see the hostap documentation for an overview of all the options it supports. -
Testing clients: you must execute the test tool with the
--ap
parameter (see below). This instructs the tool into creating an AP with as name testnetwork and password abcdefgh. Connect to this network with the client you want to test. By default the client must request an IP using DHCP. To edit properties of the created AP, such as the channel it's created on, you can editresearch/hostapd.conf
.
This mode requires only one wireless network card, but generally requires a patched driver and/or firmware. See Patched Drivers on how to install patched drivers/firmware, and Supported Network Cards for compatible network cards. Execute the test tool in this mode using:
./fragattack.py wlan0 [--ap] $COMMAND
Possible values of $COMMAND
are listed in testing for vulnerabilities
and extended vulnerability tests.
One advantage of this mode is that it works fairly well when testing clients that may enter a sleep state. Nevertheless, if possible, I recommend disabling sleep functionality of the client being tested, see Handling sleep mode.
This mode requires two wireless network cards: one will act as an AP or the client, and the other one will be used to inject frames. The advantage is that this mode way work without requiring patched drivers. Execute the test tool in this mode using:
./fragattack.py wlan0 --inject wlan1 [--ap] $COMMAND
Here interface wlan0 will act as a legitimate client or AP, and wlan1 will be used to inject frames. For wlan0, any card that supports normal client or AP mode on Linux can be used. For wlan1, a card must be used that supports injection mode according to Supported Network Cards.
When testing clients in this mode, injected frames may be sent when the client is in a sleep state. This causes attacks to fail, so you must make sure the client will not enter a sleep state.
This mode is experimental and only for research purposes. See hwsim mode details for more information.
You can test devices by running the test tool as discussed in interface modes
and replacing $COMMAND
with one of the commands in the table blow. We assume that clients will
request an IP using DHCP (if this is not the case see static IP configuration).
All commands work against both clients and APs unless noted otherwise.
The tool outputs TEST COMPLETED SUCCESSFULLY
if the device is vulnerable to the attack corresponding
to the given $COMMAND
, and outputs Test timed out! Retry to be sure, or manually check result
if
the device is not vulnerable. After the test completed you can close the test tool using CTRL+C
.
Most attacks have several slight variants represented by different $COMMAND
values.
Verifying the result of some tests requires running tcpdump or wireshark on the device under test (the table below states if tcpdump has to be used). This tcpdump packet capture must only include packets that passed PHY and MAC layer processing. For instance, on Linux this capture should be made while the wireless interface is in "managed" or "ap" mode, not in monitor mode, meaning the capture will only contain packets that passed processing at the Wi-Fi layer. See avoiding tcpdump on APs for a discussion on how some tests can nevertheless be performed without having to run tcpdump on APs.
To verify your test setup, the first command in the table below performs a normal ping that must succeed. The second command sends the ping as two fragmented Wi-Fi frames, and should only fail in the rare case that the tested device doesn't support fragmentation. In case one of these tests is not working, follow the instructions in network card injection test to assure your network card is properly injecting frames. If the client being tested might enter sleep mode, see Handling sleep mode.
The third, fourth, and fifth commands are not attacks but verify basic defragmentation behaviour of a device and are further discussed below the table.
Command | Short description |
---|---|
ping |
Send a normal ping. |
ping I,E,E |
Send a normal fragmented ping. |
ping I,E,E --delay 5 |
Send a normal fragmented ping with a 5 second delay between fragments. |
ping-frag-sep |
Send a normal fragmented ping with fragments separated by another frame. |
ping-frag-sep --pn-per-qos |
Same as above, but also works if the target only accepts consecutive PNs. |
ping I,E --amsdu |
Send a ping encapsulated in a normal (non SPP protected) A-MSDU frame. |
amsdu-inject |
Simulate attack: send A-MSDU frame whose start is also a valid rfc1042 header. |
amsdu-inject-bad |
Same as above, but against targets that incorrectly parse the frame. |
ping I,F,BE,AE |
Inject two fragments encrypted under a different key. |
ping I,F,BE,AE --pn-per-qos |
Same as above, but also works if the target only accepts consecutive PNs. |
ping I,E,R,AE |
Inject a fragment, try triggering a reassociation, and inject second fragment. |
ping I,E,R,E |
Same as above, but with a longer delay before sending the second fragment. |
ping I,E,R,AE --full-recon |
Inject a fragment, deauthenticate and reconnect, then inject second fragment. |
ping I,E,R,E --full-recon |
Same as above, but with a longer delay before sending the second fragment. |
ping I,E,E --inc-pn 2 |
Send a fragmented ping with non-consecutive packet numbers. |
ping I,E,P |
Send a fragmented ping: first fragment encrypted, second fragment in plaintext. |
ping I,P,E |
Send a fragmented ping: first fragment in plaintext, send fragment encrypted. |
ping I,P |
Send a plaintext ping. |
ping I,P,P |
Send a fragmented ping: both fragments are sent in plaintext. |
linux-plain |
Mixed plaintext/encrypted fragmentation attack specific to Linux. |
ping I,D,P --bcast-ra |
Send a unicast ping in a plaintext broadcasted 2nd fragment once connected. |
ping D,BP --bcast-ra |
Same as above, but frame is sent during 4-way handshake (check with tcpdump). |
eapol-amsdu I,P |
Send a plaintext A-MSDU containing a ping request cloacked as an EAPOL frame. |
eapol-amsdu BP |
Same as above, but the frame is sent during the handshake (check with tcpdump). |
eapol-amsdu-bad I,P |
Send malformed plain. A-MSDU containing a ping req. cloacked as EAPOL frame. |
eapol-amsdu-bad BP |
Same as above, but the frame is sent while connecting (check with tcpdump). |
How commands match to CVEs is listed below. Note that for implementation flaws we list a reference CVE identifier, however, vendors may use different CVEs because an implementation vulnerability normally receives a unique CVE for each affected codebase. We nevertheless recommend to always refer to these reference CVEs as a way to easily refer to each type of discovered implementation flaw.
-
ping
: This test must always succeed. If it fails, something is wrong with the test setup. -
ping I,E,E
: This test should succeed against all modern laptops, smartphones, and APs. If it fails, something is likely wrong with the test setup. Try adding the--icmp-size 100
parameter as a fix. If it works with this extra parameter, you have to execute all other tests with this extra parameter as well. The only time I encountered this test failing for valid reasons is when the tested device doesn't support receiving fragmented frames, which can be the case on lightweight IoT devices and, for example, OpenBSD.
-
ping I,E,E --delay 5
: This test is used to check the maximum accepted delay between two fragments. If this test doesn't work, try it again with--delay 1.5
or lower. For instance, Linux removes fragments from memory after 2 seconds, meaning a delay of 1.8 will work while 2.2 will result in no reply. In case the maximum accepted delay is low, all fragments sent in other tests must be sent within this maximum accepted delay. Otherwise, tests will trivially fail and you might conclude a device isn't vulnerable to an attack even though it actually is. -
ping-frag-sep
: This tests sends a fragmented Wi-Fi frame that is seperated by an unrelated frame. That is, it sends the first fragment, then a (normal) unrelated Wi-Fi frame, and finally the second fragment. In case this test fails, the mixed key attack and cache attack will likely also fail (since they require sending other frames between two fragments). The only purpose of this test is to better understand the behaviour of a device and to learn why other tests might be failing. -
ping-frag-sep --pn-per-qos
: Same as above, but adding the--pn-per-qos
parameter assures both fragments have a consecutive Packet Number (PN). This is something that a reciever should be verifying in order to be secure. Unfortunately, many implementations don't verify whether PNs are consecutive.
The test ping I,E --amsdu
checks if an implementation supports non-SPP A-MSDUs, in which case it is likely
vulnerable to one of the below two attacks. To prevent attacks, ideally the network must mandate the usage of
SPP A-MSDUs (and drop all non-SPP A-MSDUs). In case it's not an option to drop non-SPP A-MSDUs, temporary
mitigations are discussed in Section 7.2 of the paper.
The last two tests are used to simulate our A-MSDU injection attack:
-
amsdu-inject
: This test simulates the A-MSDU injection attack described in Section 3.2 of the paper. In particular, it sends an A-MSDU frame whose start is also a valid LLC/SNAP header (since this is also what happens in our reference attack). -
amsdu-inject-bad
: Some devices incorrectly parse A-MSDU frames that start with a valid LLC/SNAP header causing the above test to fail. In that case tryamsdu-inject-bad
instead (see Section 3.6 in the paper). Note that if this test succeeds, the impact of the attack is effectively identical to implementations that correctly parse such frames.
-
When running the mixed key test against an AP, the AP must be configured to regularly (e.g. every minute) renew the session key (PTK) by executing a new 4-way handshake. The tool will display
Client cannot force rekey. Waiting on AP to start PTK rekey
when waiting for this PTK rekey handshake. Against a low number of APs, the test tool can also request to renew the PTK by adding the--rekey-req
parameter, meaning there is no need to configure the AP to periodically renew the key. -
Some APs cannot be configured to regularly renew the session key (PTK). Against these APs you can instead try a cache attack test. In case the AP is vulnerable to cache attacks, then it is likely also vulnerable to mixed key attacks (unless these is strong evidence that contradict this, e.g., a code audit indicates mixed key attacks are prevented). If the AP isn't vulnerable to cache attacks, then we cannot say anything about its susceptibility to mixed key attacks, and in that case I recommend doing a code audit instead.
-
ping I,F,BE,AE --pn-per-qos
: The extra--pn-per-qos
parameter assures that both injected fragments have consecutive packet numbers, which is required for the mixed key attack to succeed against certain devices (e.g. against Linux). -
Several devices implement the 4-way handshake differently and this will impact whether these tests will succeed or not. In case the tests fail, it is recommended to also perform the mixed key attack tests listed in Extended Vulnerability Tests.
-
When testing an AP, the tool sends a first fragment, then tries to reassociate with the AP, and finally sends the second fragment. However, not all APs properly support the reassociation process. In that case, add the
--full-reconnect
option as shown in the table, which makes the test tool to deauthenticate after sending the first fragment. -
When testing a client, the tools sends a first fragment, disassociates the client, and once the client has reconnected will send the second fragment. Ideally the client will immediately reconnect after sending the disassociation frame. This may require disabling all other networks in the client being tested. I also found that some clients don't seem to properly handle the disassocation, and in that case you can add the
--full-reconnect
option as shown in the table to send a deauthentication frame instead. -
I have found that it's best to execute each cache attack test several times. Sometimes a cache attack test might fail although the implementation is vulnerable. This can be due to background noise, other devices sending frames to the tested device, etc.
-
ping I,E,R,AE [--full-recon]
: Here the second fragment is sent immediately after reconnecting with the device under test, which is important in case the device clears fragments from memory after a short time. Note thatfull-recon
is a shorthand offull-reconnect
. -
ping I,E,R,E [--full-recon]
: Here the second fragment is sent 1 second after reconnecting with the device under test, which can be useful in case there is a small delay between completion of the handshake and installing the negotiated key. -
Overall it can be tedious to test if a device is vulnerable to cache attacks. Therefore I also recommend to perform a code audit to check if fragments stay in the memory after disassociating or deauthenticating from a network or after reassociating (this can also be dynamically checking using debug prints). If fragments stay in memory, you should consider this as a risk, even if it's unknown whether it can be exploited. This is similar to knowing an implementation has a buffer overflow but not (yet) knowing how to exploit it.
In our experiments, this test only failed against Linux and against devices that don't support fragmentation.
-
ping I,E,P
andlinux-plain
: if this test succeeds the resulting attacks are described in Section 6.3 of the paper. Summarized, in combintation with the A-MSDU or cache vulnerability, it can be exploited to inject packets. When not combined with any other vulnerabilities the impact is implementation-specific (CVE-2020-26147). -
ping I,P,E
: if this test succeeds it is trivial to inject plaintext frames towards the device if fragmentation is being used by the network (CVE-2020-26147). -
ping I,P
: if this tests succeeds the implementation accepts plaintext frames in a protected Wi-Fi network, allowing trivial packet injection (CVE-2020-26140). -
ping I,P,P
: if this test succeeds the implementation accepts fragmented plaintext frames in a protected Wi-Fi network, allowing trivial packet injection (CVE-2020-26143).
The following two tests send broadcast frames, which are not automatically retransmitted, and it is therefore recommended to execute them several times. This is because background noise may prevent the tested devices from receiving the injected broadcast frame. In my experiments, mainly clients were affected (out of the tested APs only Free/NetBSD ones were affected).
-
ping I,D,P --bcast-ra
: Send a unicast ping in a plaintext broadcasted 2nd fragment once connected. The result of this variant of the attack is checked automatically by the test tool. -
ping D,BP --bcast-ra
: Here the above frame is sent while connecting to the network (i.e. during the 4-way handshake). This is important because several clients and APs are only vulnerable before completing the 4-way handshake. To confirm the result of this test you have to run wireshark or tcpdump on the victim, and monitor whether the injected ping request is received by the victim. In tcpdump you can use the filtericmp
and in wireshark you can also use the filterframe contains "test_ping_icmp"
to more easily detect this ping request. In my experiments mainly clients were affected.
-
eapol-amsdu I,P
: This is the standard test for the implementation-specific vulnerability discussed in Section 6.5 of the paper. Both clients and APs can be vulnerable. Its result is checked automatically by the test tool. -
Tests ending on
BP
(eapol-amsdu BP
andeapol-amsdu-bad BP
): These tests inject the malicious frame during the execution of the 4-way handshake. To confirm the result of this test you have to run wireshark or tcpdump on the victim, and monitor whether the injected ping request is received by the victim. In tcpdump you can use the filtericmp
and in wireshark you can also use the filterframe contains "test_ping_icmp"
to more easily detect this ping request. -
Tests starting with
eapol-amsdu-bad
(eapol-amsdu-bad BP
andeapol-amsdu-bad I,P
): Several implementations incorrectly process A-MSDU frames whose first 6 bytes also equal a valid RFC1042 header for EAPOL. To test these implementations, you have to use theeapol-amsdu-bad
test variant. Note that if this tests succeeds, the impact of the attack is identical to implementations that correctly parse such frames (for details see Section 3.6 and 6.6 in the paper).
In case the test tool doesn't appear to be working, check the following:
-
Check that no other process is using the network card (e.g. kill your network manager).
-
If everything worked previously, try unplugging your Wi-Fi dongle, restart your computer or virtual machine, and then try again.
-
Assure the device you are testing doesn't enter a sleep state (causing it to miss injected frames). I recommend running the test tool in mixed mode since this better handles clients that may go into a sleep state.
-
Run the injection tests to make sure injection is working properly. Also assure that a 20 MHz channel is used, injection on other channels is untested.
-
Check that you machine isn't generating background traffic that interferes with the tests. In particular, disable networking in your OS, manually kill your DHCP client/server, etc. See also Before every usage.
-
Confirm that you are connecting to the correct network. Double-check
client.conf
. -
Make sure the AP being tested is using (AES-)CCMP as the encryption algorithm. Other encryption algorithms such as TKIP or GCMP are not supported.
-
If you updated the code using git, execute
./build.sh
and./pysetup.sh
again (see Prerequisites). In case the patched drivers got updated, remember to recompile them as well. -
If you are using a virtual machine, try to run the test tool from a live USB image instead.
-
Check that the tested device doesn't block ICMP ping requests. In case it doesn't reply to pings, you can run tcpdump or wireshark on the device, or you can try any of the other methods listed in No ICMP Support.
-
Run the tool with the extra parameter
--debug 2
to get extra debug output from wpa_supplicant or hostapd and from the test tool itself. -
Confirm using a second monitor interface that no other frames are sent in between fragments. For instance, I found that my Intel device sometimes sends Block Ack Response Action frames between fragments, and this interfered with the defragmentation process of the device under test.
-
Double-check that you are using modified firmware if needed for your wireless network card. The test tool already checks this automatically for
ath9k_htc
devices. The test tool also automatically checks if you are using modified drivers, though it might be good to manually double-check this on your specific Linux distribution.
Due to implementation variations it can be difficult to confirm/exploit certain vulnerabilities, in particular the mixed key and cache attack can be non-trivial to confirm in practice. Therefore, I recommend to only consider a device secure if there are explicit checks in the code to prevent these attacks. Additionally, if time permits, I also recommend the following more advanced tests. These have a lower chance of uncovering new vulnerabilities, but might reveal attack variants or particular device behaviour that the normal tests can't detect.
If the normal tests in Testing for Vulnerabilities have already confirmed the presence of a certain vulnerability class, there is little need to test the other attack variants of that vulnerability. All commands work against both clients and APs unless noted otherwise.
Command | Short description |
---|---|
ping I,E --amsdu-fake |
If this test succeeds, the A-MSDU flag is ignored (§3.5). |
ping I,E --amsdu-fake --amsdu-spp |
Check if the A-MSDU flag is authenticated but then ignored (§3.5). |
ping I,F,BE,E |
In case the new key is installed relatively late. |
ping I,E,F,AE |
Variant if no data frames are accepted during the rekey handshake. |
ping I,E,F,AE --rekey-plain |
If the device performs the rekey handshake in plaintext. |
ping I,E,F,AE --rekey-plain --rekey-req |
Same as above, and actively request a rekey as client. |
ping I,E,F,AE --rekey-early-install |
Install the new key after sending message 3 of the 4-way handshake. |
ping I,E,F,E [--rekey-pl] [--rekey-req] |
Same as above 4 tests, but with longer delay before 2nd fragment. |
ping I,F,BE,AE --freebsd |
Mixed key attack against FreeBSD or similar implementations. |
ping I,E,R,AE --freebsd [--full-reconnect] |
Cache attack specific to FreeBSD implementations. |
ping I,E,R,AP --freebsd [--full-reconnect] |
Cache attack specific to FreeBSD implementations. |
ping I,E,R,AP [--full-reconnect] |
Cache attack test where 2nd fragment is sent in plaintext. |
ping I,E,E --amsdu |
Send a normal ping as a fragmented A-MSDU frame. |
ping I,E,P,E |
Ping with first frag. encrypted, second plaintext, third encrypted. |
linux-plain 3 |
Same as linux-plain but decoy fragment is sent using QoS priority 3. |
ping I,P --bcast-ra |
Ping in a plaintext broadcast frame after 4-way HS. |
ping BP --bcast-ra [--bcast-dst] |
Ping in plaintext broadcast frame during 4-way HS (use tcpdump). |
ping BP [--bcast-dst] |
Ping in a plaintext frame during the 4-way handshake (use tcpdump). |
eapfrag BP,BP |
Experimental broadcast fragment attack (use tcpdump). |
eapol-amsdu[-bad] BP --bcast-dst |
Same as eapol-amsdu BP but easier to verify against APs (use tcpdump). |
eapol-inject 00:11:22:33:44:55 |
Test if AP forwards EAPOL frames before authenticated (use tcpdump). |
eapol-inject-large 00:11:22:33:44:55 |
Make AP send fragmented frames by EAPOL injection (use tcpdump). |
ping I,D,E |
Send ping inside an encrypted second fragment (no 1st fragment). |
ping I,E,D |
Send ping inside an encrypted first fragment (no 2nd fragment). |
It is only useful to execute these two tests if the main test ping I,E --amsdu
fails and you want to better
understand how the tested device handles A-MSDU frames:
-
ping I,E --amsdu-fake
: If this tests succeeds, the receiver treats all frames as normal frames (meaning it doesn't support A-MSDU frames). This behaviour is not ideal, although it is unlikely that an attacker can abuse this in practice (see Section 3.5 in the paper). -
ping I,E --amsdu-fake --amsdu-spp
: If this tests succeeds, the receiver authenticates the QoS A-MSDU flag of every received frame (i.e. it will not mask it to zero on reception) but then treats all received frames as normal frames (meaning it does not support the reception of real A-MSDU frames). This behaviour is not ideal, although it is unlikely that an attacker can abuse this in practice (see Section 3.5 in the paper).
Most devices I tested are vulnerable to mixed key attacks. In case the normal mixed key attack tests indicate
that a device is not vulnerable, but the test ping-frag-sep
does succeed, it is highly recommended to try
these alternative mixed key attack tests.
As a general remark, when testing an AP, you can add the --rekey-req
parameter to any of the mixed key attack tests to
actively request a rekey handshake. A low number of APs will then perform the rekey handshake. Most APs will ignore
this request though, and have to be explicitly configured to regularly renew the session key (PTK).
Some notes regarding the tests:
-
ping I,F,BE,E
andping I,E,F,AE
: These are fairly straightforward mixed key attack tests where both fragments are injected at different times. -
ping I,E,F,AE --rekey-plain
: Some drivers (e.g. MediaTek) will perform the rekey handshake in plaintext. To test devices that use such a driver you must add the--rekey-plain
parameter. -
ping I,E,F,AE --rekey-plain --rekey-req
: This particular combination is useful to test routers that use a MediaTek driver. These routers perform the rekey handshake in plaintext, and the client can actively request a rekey handshake. -
ping I,E,F,AE --rekey-early-install
: A low number of clients (incorrectly) install the key too early during a pairwise session rekey. To reliably test these clients, add the--rekey-early-install
parameter. This test is not meaningfull against APs. -
ping I,E,F,E [--rekey-pl] [--rekey-req]
: This test variant is the same as the previousping I,E,F,AE *
tests, except that the second fragment is send 1 second after the 4-way handshake. This can be important because in a low number of devices there is a small delay before the new key is installed. Note that--rekey-pl
is a shorthand of--rekey-plain
.
Finally, in case the test ping-frag-sep
doesn't succeed, you should try the following mixed key attack test:
ping I,F,BE,AE --freebsd
: This essentially performs the rekey handshake against a FreeBSD implementation, or a driver that borrows code from FreeBSD, without affecting the defragmentation process of data frames. See Appendix E in the paper for details.
-
ping I,E,R,AE --freebsd --full-reconnect
: This test can be used to check if a FreeBSD AP, or a driver that borrows code from FreeBSD, is vulnerable to a cache attack. See Appendix E in the paper for details on how this test works. You should also try this test without the--full-reconnect
parameter. The test also works against clients, but these are unlikely to be affected. -
ping I,E,R,AP --freebsd --full-reconnect
: This test is a variant against FreeBSD APs, or against a driver that borrows code from FreeBSD, where the second fragment is sent in plaintext after reconnecting with the AP. Against some dongles on FreeBSD this test was more reliable and still proves that old fragments remain in the AP's memory after reconnecting. You should also try this test without the--full-reconnect
parameter. The test also works against clients, but these are unlikely to be affected. -
ping I,E,R,AP [--full-reconnect]
: In this test the second fragment is sent in plaintext. This can be useful if the device being tested doesn't immediately install the key after the 4-way handshake. If this tests succeeds, it shows that the device keeps fragments in memory after (re)connecting to a network, meaning its vulnerable to cache attacks. Unlike the above two commands, this one is also useful to perform against clients (as well as APs).
-
ping I,E,E --amsdu
: This test sends a fragmented A-MSDU frame, which not all devices can properly receive. It does not test for a vulnerability. Instead, this test is useful to determine the practical exploitability of the "Mixed plain/encrypt attack". Namely, if this tests succeeds, it's easier to attack the device if the second fragment can be sent in plaintext (testping I,E,P
). See Section 6.3 of the paper for details. -
ping I,E,P,E
andlinux-plain 3
: If all the other mixed plain/encrypt attack tests didn't succeed, you can try these two extra tests as well. I think it's quite unlikely this will uncover a new vulnerability.
Most of the following tests send broadcast frames, which are not automatically retransmitted, and it is therefore recommended to execute them several times. This is because background noise may prevent the tested devices from receiving the injected broadcast frame. In my experiments, mainly clients were affected. Most clients are only vulnerable while connecting to the network (i.e. during the execution of the 4-way handshake).
-
ping I,P --bcast-ra
: this sends a unicast ICMP ping request inside a plaintext broadcast Wi-Fi frame (CVE-2020-26145). This test can be performed against both clients and APs. -
ping BP --bcast-ra
: similar to the above testping I,P --bcast-ra
, but the ping is sent before the client has authenticated with the network, i.e., during the execution of the 4-way handshake (CVE-2020-26145). You must run tcpdump or wireshark to check if the client accepts the frame. In tcpdump you can use the filtericmp
and in wireshark you can also use the filterframe contains "test_ping_icmp"
to more easily detect this ping request. -
ping BP --bcast-ra --bcast-dst
: this test is the same as the previous one, but is useful if you cannot run tcpdump on the target AP. Note that this test is only meaningfull against APs. The extra--bcast-dst
parameter in this test causes a vulnerable AP to broadcast the injected ping request to all connected clients. In other words, to check if an AP is vulnerable, execute this command, and listen for broadcast Wi-Fi frames on a second device that is connected to the AP by using the filtericmp
orframe contains "test_ping_icmp"
.
-
ping BP [--bcast-dst]
: this is a variant of the above two testsping BP --bcast-ra [--bcast-dst]
, except that the ping request is now sent in a plaintext unicast frame instead of a broadcast one (no CVE is allocated yet - it's related to CVE-2020-26145). This test must be performed against both clients and APs. The ping is sent before the client has authenticated with the network (i.e. during the execution of the 4-way handshake), meaning you must run tcpdump or wireshark to check if the device accepts this frame. Alternatively, when testing APs, you can add the--bcast-dst
parameter similar to the above test, and then use tcpdump or wireshark on a second device that is connected to the AP by using the filtericmp
orframe contains "test_ping_icmp"
. -
eapfrag BP,BP
: this is a specialization of the above broadcast fragment tests that is performed before the client has authenticated. It is a very experimental attack based on the analysis of leaked code. It first sends a plaintext fragment that starts with an EAPOL header, which is accepted because the 4-way handshake is still being executed. Then it sends a second broadcast fragment with the same sequence number. Based on the analysis of leaked code some devices may now accept this fragment (because the previous fragment was allowed), but the subsequent code will process it as a normal frame (because the fragment is broadcasted). You must use tcpdump or wireshark on the victim to determine whether the frame is properly received, for example using the filtericmp
orframe contains "test_ping_icmp"
. An alternative variant iseapfrag BP,AE
in case the normal variant doesn't work.
This test can be used in case you want to execute the eapol-amsdu[-bad] BP
tests but cannot run tcpdump or wireshark on
the AP. This test is only meaningfull against APs: the command eapol-amsdu[-bad] BP --bcast-dst
causes a vulnerable AP
to broadcast the injected ping request to all connected clients. In other words, to check if an AP is vulnerable, execute this
command, and listen for broadcast Wi-Fi frames on a second device that is connected to the AP by using the filter icmp
or
frame contains "test_ping_icmp"
.
-
eapol-inject 00:11:22:33:44:55
: This test is only meaningfull against APs. To perform this test you have to connect to the network using a second device and replace the MAC address00:11:22:33:44:55
with the MAC address of this second device. Before being authenticated, the test tool will send an EAPOL frame to the AP with as final destination this second device. If the AP forwards the EAPOL frame to the second device, the AP is considered vulnerable. To confirm if the AP forwards the EAPOL frame you must run tcpdump or wireshark on the second device. You can use the wireshark filterframe contains "forwarded_data"
when monitoring decrypted traffic on the wireless interface of the second device (or the tcpdump filterether proto 0x888e
to monitor all EAPOL frames). See Section 6.6 of the paper for the details and impact of this. -
eapol-inject-lage 00:11:22:33:44:55
: In case the aboveeapol-inject
test succeeds, you can also tryeapol-inject-large
to see if this vulnerability can be abused to force the transmission of encrypted fragments. You again have to use tcpdump or wireshark to check this. Use the wireshark or tshark filter(wlan.fc.frag == 1) || (wlan.frag > 0)
to detect fragmented frames. I found it very rare for this attack to work.
-
ping I,D,E
: If this test succeeds, the client or AP doesn't support (de)fragmentation, but is still vulnerable to attacks. The problem is that the receiver treats the last fragment as a full frame. See Section 6.8 in the paper for details and how this can be exploited. -
ping I,E,D
: If this test succeeds, then the client or AP treats the first fragment as a full frame. Although this behaviour is not ideal, it's currently unknown whether this, on its own, can be exploited in practice.
The script test-injection.py
can be used to test whether frames are properly injected when
using injection mode:
./test-injection.py wlan0 wlan1
Here we test if the network card wlan0
properly injects frames and we use network card wlan1
to monitor whether frames are properly injected. Note that both interfaces need to support
monitor mode for this test script to work.
In case you do not have a second network card, you can execute a partial injection test using:
./test-injection.py wlan0
Unfortunately, the above test can only test if the kernel overwrites fields of injected frames, it cannot test whether the firmware or wireless chip itself overwrites fields.
To test whether a network card properly injects frames in mixed mode, which is the mode I recommend to use, you can execute the following two commands:
./fragattack.py wlan0 ping --inject-test wlan1
./fragattack.py wlan0 ping --inject-test wlan1 --ap
Here we test whether wlan0
properly injects frames by monitoring the injected frames using the
second network card wlan1
. The first command tests if frames are properly injected when using
mixed mode while acting as a client, and the second command when using mixed mode while acting
as an AP. In order to start the test, the client must be able to connect to a network, and the
AP waits until a client is connecting before starting the injection tests (see Before every usage
for configuring the connection setup of the client and AP).
If you also want to test the retransmission behaviour of wlan0
in mixed mode you can execute:
./fragattack.py wlan0 ping --inject-test-postauth wlan1
./fragattack.py wlan0 ping --inject-test-postauth wlan1 --ap
In case you do not have a second network card, you can execute a partial mixed mode injection test using:
./fragattack.py wlan0 ping --inject-test[-postauth] self
./fragattack.py wlan0 ping --inject-test[-postauth] self --ap
Unfortunately, the above tests can only test if the kernel overwrites fields of injected frames, it cannot test whether the firmware or wireless chip itself overwrites fields.
The test script will give detailed output on which tests succeeded or failed, and will conclude by outputting
either ==> The most important tests have been passed successfully
or a message indicating that either important
tests failed or that it couldn't capture certain injected frames.
Note that the injection scripts only test the most important behaviour. The best way to confirm that injection is properly working is to perform the vulnerability tests against devices that are known to be vulnerable, and confirming that the tool correctly identifies the device(s) as vulnerable.
When certain injected frames could not be captured, this may either be because of background noise, or because the
network card being tested is unable to properly inject certain frames (e.g. the firmware of the Intel AX200 crashes
when injecting fragmented frames). It could also be that frames are in fact properly injected, but that the network
card used to monitor whether frames are injected properly (wlan1
in the above examples) is not reliable and is,
for example, missing most frames due to background noise. Try running the tests on a different channel as well.
When the injection tests are working, but you have problems reliably performing the attack tests, this may be because the devices you are testing are entering sleep mode. See Handling sleep mode for additional notes on this problem.
When using wireshark to inspect the injection behaviour of a device it is recommended to use a second device in monitor mode to see how frames are injected.
In case you open the interface used to inject frames then you should see injected frames twice: (1) first you see the frame as injected by whatever tool is sending it, and then (2) a second time by how the frame was injected by the driver. These two frames may slightly differ if the kernel overwrote certain fields. If you only see an injected frame once it may have been dropped by the kernel.
In case the device you are testing doesn't support DHCP, you can manually specify the IP addresses that the test tool should use. For example:
./fragattack.py wlan0 [--ap] ping --inject wlan1 --ip 192.168.100.10 --peerip 192.168.100.1
Here the test tool will use IP address 192.168.100.10, and it will inject a ping request to the peer IP address 192.168.100.1.
When a test sends IP packets before obtaining IP addresses using DHCP, it will use the default IP
address 127.0.0.1. To use different (default) IP addresses, you can also use the --ip
and -peerip
parameters.
Most attack tests work by sending ICMP ping requests in special manners, and seeing wether we receive
an ICMP ping response. In case the device being tested does not support ICMP pings you can instead
use ARP requests by adding the --arp
parameter to all tests. TODO: Explain in detial for which
tests this parameter has an effect..
TODO: When acting as a client we can also inject DHCP requests intead.
In case you cannot get access to one of the recommended wireless network cards, a second option is to get a network card that uses the same drivers on Linux. In particular, you can try:
I recommend cards based on ath9k_htc
. Not all cards that use iwlmvm
will be compatible. When
using an alternative network card, I strongly recommend to first run the injection tests
to confirm that the network card is compatible.
In order to use the test tool on 5 GHz channels the network card being used must allow the injection
of frames in the 5 GHz channel. Unfortunately, this is not always possible due to regulatory
constraints. To see on which channels you can inject frames you can execute iw list
and look under
Frequencies for channels that are not marked as disabled, no IR, or radar detection. Note that these
conditions may depend on your network card, the current configured country, and the AP you are
connected to. For more information see, for example, the Arch Linux documentation.
Note that a device may use different drivers to handle the 2.4 and 5 GHz band. As a result, it is important to test devices in both these bands, since a device may behave differently depending on which frequency band is being used.
Note that in mixed mode the Linux kernel may not allow the injection of frames even though it is
allowed to send normal frames. This is because in the function ieee80211_monitor_start_xmit
the kernel refuses
to inject frames when cfg80211_reg_can_beacon
returns false. As a result, Linux may refuse to
inject frames even though this is actually allowed. Making cfg80211_reg_can_beacon
return true
under the correct conditions prevents this bug.
Devices such as mobile phones or IoT gadgets may put their Wi-Fi radio in sleep mode to reduce energy usage. When in sleep mode, these devices are unable to receive Wi-Fi frames, which may interfere with our tests. There are some options to try to mitigate this problem:
-
Try to disable sleep mode on the device being tested. This is the most reliable solution, but unfortunately not always possible.
-
Run the test tool in mixed mode. Most network cards will then queue injected frames until the device being tested is awake again.
-
Try a different network card to perform the tests. I found that different network cards will inject frames at (slightly) different times, and this may be the difference between injected frame properly arriving or being missed. For instance, against a Pixel 4 XL the test tool was unreliable when using a TL-WN722N but worked reliably with an Intel 8265.
-
Assign static IPs to the device under test and let the test tool use static IPs (see Static IP Configuration). With many tests this can be more reliable because the test tool can then immediately send the test frame instead of first having to use/wait on DHCP.
Some vulnerabilities can only be exploited while the device under test is connecting to the network, i.e., when it's executing the 4-way handshake. This makes them harder to test automatically and typically means that tcpdump or similar has to be used on the device under test. However, APs can be tested without running tcpdump on it. In particular, the broadcast fragment attack tests (CVE-2020-26145) and A-MSDU EAPOL attack tests (CVE-2020-26144) can be performed without running tcpdump on the device under test. Instead, tcpdump has to run on another client connected to the AP. Concretely, the following commands can be used:
-
ping I,P --bcast-ra --bcast-dst
andping BP --bcast-ra --bcast-dst
-
eapol-amsdu BP --bcast-dst
andeapol-amsdu-bad BP --bcast-dst
With these commands, you can monitor for the ping request on another client that is connected to the AP. In case the ping request is received on this independent client, the AP under test is vulnerable. Unfortunately, currently, it appears hard to test clients against these attack variants without running tcpdump on the client.
The Technoethical N150 HGA, TP-Link TL-WN722N v1.x, and Alfa AWUS036NHA, all use the ath9k_htc
driver.
For me these devices worked fairly well in a virtual machine, although like with all devices they are more reliably when used natively. When using a VM, I recommend to configure the VM to use a USB2.0 controller, since that appeared more stable (at least with VirtualBox).
In recent kernels there was a (now fixed)
regression with the ath9k_htc
driver causing it not to work. Simply use an up-to-date kernel or our patched
drivers to avoid this issue.
If for some reason Linux does not automatically recognize this device, execute sudo modprobe mt76x2u
to manually load the driver. I found that, at least on my devices, this dongle was unstable when connected
to a USB3.0 port. Others seems to have reported similar issues
with this dongle. When connected to a USB2.0 port I found this dongle to be reliable.
This device is generally not supported by default in most Linux distributions and requires manual
installation of drivers. On Kali Linux you can install the driver using sudo apt install realtek-rtl88xxau-dkms
.
To install the driver on other distributions check your package manager or follow the installation
instructions on GitHub. Before plugging in the device,
it is recommended to execute modprobe 88XXau rtw_monitor_retransmit=1
.
Unfortunately, this device doesn't work in mixed mode, which is the recommended mode, and is difficult
to use in combination with our modified drivers. In practice, you will have to uninstall the modified
drivers and then run the test tool using the parameters --no-drivercheck
and using --inject wlan0
where wlan0 refers to the AWUS036ACH card. Because of these limitations this device is not recommended.
I tested the Intel AX200 and found that it is not compatible with the test tool: its firmware crashes after injecting a frame with the More Fragments flag set. If an Intel developer is reading this, please update the firmware and make it possible to inject fragmented frames.
Warning: this is currently an experimental mode, only use it for research purposes.
This mode requires only one network card that supports monitor mode, and in contrast to mixed mode, the network card does not have to support virtual interfaces. The disadvantage is that in this mode frames are handled a bit slower, and it is not reliable when the network card does not acknowledge frames:
-
Due to commit 1672c0e31917 ("mac80211: start auth/assoc timeout on frame status") authentication as a client will instantly timeout, meaning we cannot use hwsim mode as a client currently. TODO: We need to patch the kernel to avoid this timeout.
-
If we test a client that uses commit 1672c0e31917 ("mac80211: start auth/assoc timeout on frame status") we (as an AP) must acknowledge frames sent towards us. Otherwise the client being tested will be unable to connected. TODO: Test which devices acknowledge frames in monitor mode, and test
iw set wlanX monitor active
. -
Certain APs will also require that authentication and association frames are acknowlegded by the client. This means that we (as a client) must again acknowledge frames sent towards us. TODO: Test which devices acknowledge frames in monitor mode, and test
iw set wlanX monitor active
. -
For some strange reason, the Intel/mvm cannot receive data frames from Android/iPhone/iPad after 4-way HS? This is a very strange bug. TODO: Investigate this further.
Before using this mode, create two virtual network cards:
./hwsim.sh
This will output the two created virtual "hwsim" interfaces, for example wlan1 and wlan2. When testing an AP in this mode, you must first search for the channel of the AP, and put the real network card on this channel:
./scan.sh wlan0
ifconfig wlan0 down
iw wlan0 set type monitor
ifconfig wlan0 up
# Pick the channel that the AP is on (in this example 11)
iw wlan0 set channel 11
Here wlan0 refers to the real network card (not an interface created by hwsim.sh
). hen testing a
client, do do not first have to configure the channel (it is taken from hostapd.conf
). You can now
start the test tool as follows:
./fragattack.py wlan0 --hwsim wlan1,wlan2 [--ap] $COMMAND
After the tool executed, you can directly run it again with a new $COMMAND
.
You can test a WPA3/SAE AP by including the following two lines in client.conf
:
key_mgmt=SAE
ieee80211w=1
To test WPA3/SAE clients you can modify hostapd.conf
and set the parameters:
wpa_key_mgmt=SAE
ieee80211w=2
We tested the above with an Intel 8265, Intel 3160, Netgear WN111v2 (carl9170
),
TP-Link TL-WN722N (ath9k_htc
) and WNDA3200 (ath9k_htc
). With those
devices I was able to connect with the AP and run some tests. So it
seems this should work with all already supported dongles. Note that I
haven't tested this in detail: my assumption has been that whether a
device is operating in WPA2 or WPA3 mode won't impact test results.
The provided client.conf
by default enables both the hunting-and-pecking method and
the hash-to-element method. To set up an AP that supports hash-to-element (and thereby
test the latest WPA3/SAE clients) you can modify hostapd.conf
and set the parameter:
sae_pwe=2
By setting this value the AP will accept both the hunting-and-pecking method and the hash-to-element method.
Download the live USB image and write it to USB using:
# Unmount in case there's an old partition on the USB
sudo umount /dev/sdb*
# Copy the image
sudo dd bs=4M if=ubuntu-20.04.2-fragattacks-1.3.3-amd64.iso of=/dev/sdb conv=fdatasync status=progress
The sha256sum of the image is 4b973452a08b981778285a33accfd4ce58625a91e8e0eab20941facf54904bba
. Replace /dev/sdb
with your USB stick. If you're not running Linux, search online how to write an ISO image to your USB stick.
When starting the live image click on "Try Ubuntu" during startup. Start a terminal by right clicking on the desktop and selecting "Open in Terminal" and execute:
cd ~/fragattacks/research
sudo su
nmcli radio wifi off
source venv/bin/activate
You can now run ./fragattacks.py
and follow the normal instructions in this README.
Remember to disable Wi-Fi using nmcli radio wifi off
as shown above, otherwise the
network manager of Ubuntu will interfere with the test tool. This README is also present
on the live image at ~/fragattacks/README.md
.
Version 1.3.3 (11 May 2021):
-
Updated the modified drivers so they compile on Linux kernel 5.10, 5.11, and 5.12.
-
Updated firmware for
ath9k_htc
devices (should have no impact on tests). -
Restructured the repository for pubic release. Removed internal documents and slides to instead reference the public versions of these documents.
-
Basic support for 40 MHz channels when using
--inject-test[-postauth]
parameter to test injection. In actual vulnerability tests, the usage of 40 MHz channels is untested (usedisable_ht40
inclient.conf
if needed).
Version 1.3.2 (8 March 2021):
-
Added presentation handouts and a summary of each vulnerability's root cause and impact.
-
Updated this README to explain that the parameter
--icmp-size 100
or similar can be added to all tests that send fragmented frames if the device under test only accepts fragments of a certain minimum size. -
Fixed minor typos in this README.
Version 1.3.1 (1 March 2021):
-
Added the test
ping BP [--bcast-dst]
to this README. It injects a plaintext ping while connecting (i.e. during the 4-way handshake). Both clients and APs can be vulnerable to this attack. -
Updated the attack overview with new examples on how packet injection vulnerabilities can be abused in practice. This includes techniques to trick IPv4-only clients into using a malicious DNS server and techniques to directly communicate with devices behind a NAT/firewall (to e.g. exploit local services).
-
Clarified that broadcast fragment tests can be performed against both clients and APs.
-
The test tool will now check whether the expected version of the Python Scapy library has been loaded.
-
Fixed some references to the paper in this README (now properly references sections 6.4, 6.6, and 6.8).
-
Updated to draft version 3 of the paper. There are no major changes compared to draft version 2, only minor textual and structural tweaks. Content-wise this is now the final version of the paper.
Version 1.3 (20 January 2021):
-
This version is based on hostap commit
a337c1d7c
("New TWT operations and attributes to TWT Setup and Nudge"). -
Added an overview of attacks and their preconditions and created these slides to better illustrate how the aggregation attack (CVE-2020-24588) works in practice.
-
Added instructions on how to test WPA3/SAE devices using either the hunting-and-pecking or hash-to-element method. This also implies that Management Frame Protection (MFP) is supported by the test tool.
-
Added a clarification to this README on how to use tcpdump to verify the result of certain tests.
-
Added the extra test
ping BP --bcast-ra --bcast-dst
to this README to be able to test for CVE-2020-26145 against APs that cannot run tcpdump (with this test tcpdump has to be run on an independent connected client). -
Added the extra tests
ping I,E,F,E [--rekey-pl] [--rekey-req]
to this README to better detect mixed key attacks (CVE-2020-24587) in certain devices. -
Fixed injection of fragmented frames when using ath9k_htc dongles in combination with 802.11n.
-
The
pysetup.sh
script has been added to create the python virtual environment. This script also fixes a bug in the scapy library when used with Python 3.9. -
The patched drivers have been updated to properly compile on Linux 5.9.0.
-
Fixed the
ping-frag-sep
test. Previously it behaved likeping-frag-sep --pn-per-qos
. Note that this test is not used to detect vulnerabilities but only to better understand implementations.
Version 1.2 (15 November 2020):
-
This version (and lower) is based on hostap commit
1c67a0760
("tests: Add basic power saving tests for ap_open"). -
Tool will automatically quit after a test completed or timed out.
-
Tool detects if the 4-way handshake is looping or if there is no reply to a rekey request (
--rekey-req
). -
When using an external DHCP server, the tool will now always send EAPOL frames with as destination address the AP (instead of the DHCP server). This is important in mixed key and cache attack tests when using an external DHCP server.
-
When testing an AP using
--rekey-req
the tool will now send EAPOL Rekey Request with a Replay Counter of one instead of zero. -
Debug output now shows the correct (group) key when encrypting broadcast/multicast frames. This does not influence any test results, it only changes the output of the test tool.
-
Clarified that all commands in this README can test both clients and APs unless noted otherwise.
-
Clarified the description of cache attacks, Broadcast fragment, and A-MSDU EAPOL attack tests in this README.
-
Clarified that it's important to test both the 2.4 and 5 GHz band in this README.
Version 1.1 (20 October 2020):
-
Fixed a bug where the command
ping I,E,D
would send a normal encrypted ping request. It now sends an encrypted ping request with the More Fragments flag set in the header. -
Moved the
amsdu-inject-[bad]
commands to Section 7 of this README. These simulate real attacks and can be used to verify whether temporary mitigations are working (see Section 7.2 in the paper). -
Fixed spelling of A-MSDU SPPs in this README and the test tool. The new argument
--amsdu-spp
is now a synonym of the old--amsdu-ssp
argument.
Version 1.0 (11 August 2020):
- Prepared initial release for usage during the embargo.