Meshgraphnet_pytorch PyTorch implementation of MeshGraphNet (GNN) with three benchmark studies:
Deformed Flag | CFD | Deformed Plate |
---|---|---|
![]() |
![]() |
![]() |
Navigate to the dataset directory
cd path/to/dataset/directory
mkdir -p ${DATA}
bash meshgraphnets/download_dataset.sh flag_simple ${DATA}
Run the following command to generate the .idx file:
python -m tfrecord.tools.tfrecord2idx <file>.tfrecord <file>.idx
python deformedflag.py
python cfd.py
python deformedplate.py
Timestep > hidden dimension == Layer > epoch > batch
-Timestep: flag:5e-3, cfd: 1e-4
-hidden dimension > 64
-layer > 20
-epoch < 100
-batch ..
Velocity/pressure | displacement/stress |
---|---|
![]() |
![]() |
Single layer attention layer + encoder-processor-decoder
Ground True vs Prediction Vs Error | Attention propogation |
---|---|
![]() |
![]() |