Skip to content

VikasOjha666/PolygonYOLOv5

Repository files navigation

Polygon-Yolov5

This repository is copy of https://github.com/XinzeLee/PolygonObjectDetection with some bug fixes so I don't claim the credit for his work. I have uploaded this for readers of my blog to replicate the results easily without facing any issues.

Section I. Description

The codes are based on Ultralytics/yolov5, and several functions are added and modified to enable polygon prediction boxes.

The modifications compared with Ultralytics/yolov5 and their brief descriptions are summarized below:

  1. data/polygon_ucas.yaml : Exemplar UCAS-AOD dataset to test the effects of polygon boxes

  2. data/images/UCAS-AOD : For the inference of polygon-yolov5s-ucas.pt

  3. models/common.py :
    3.1. class Polygon_NMS : Non-Maximum Suppression (NMS) module for Polygon Boxes
    3.2. class Polygon_AutoShape : Polygon Version of Original AutoShape, input-robust polygon model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and Polygon_NMS
    3.3. class Polygon_Detections : Polygon detections class for Polygon-YOLOv5 inference results

  4. models/polygon_yolov5s_ucas.yaml : Configuration file of polygon yolov5s for exemplar UCAS-AOD dataset

  5. models/yolo.py :
    5.1. class Polygon_Detect : Detect head for polygon yolov5 models with polygon box prediction
    5.2. class Polygon_Model : Polygon yolov5 models with polygon box prediction

  6. utils/iou_cuda : CUDA extension for iou computation of polygon boxes
    6.1. extensions.cpp : CUDA extension file
    6.2. inter_union_cuda.cu : CUDA code for computing iou of polygon boxes
    6.3. setup.py : for building CUDA extensions module polygon_inter_union_cuda, with two functions polygon_inter_union_cuda and polygon_b_inter_union_cuda

  7. utils/autoanchor.py :
    7.1. def polygon_check_anchors : Polygon version of original check_anchors
    7.2. def polygon_kmean_anchors : Create kmeans-evolved anchors from polygon-enabled training dataset, use minimum outter bounding box as approximations

  8. utils/datasets.py :
    8.1. def polygon_random_perspective : Data augmentation for datasets with polygon boxes (augmentation effects: HSV-Hue, HSV-Saturation, HSV-Value, rotation, translation, scale, shear, perspective, flip up-down, flip left-right, mosaic, mixup)
    8.2. def polygon_box_candidates : Polygon version of original box_candidates
    8.3. class Polygon_LoadImagesAndLabels : Polygon version of original LoadImagesAndLabels
    8.4. def polygon_load_mosaic : Loads images in a 4-mosaic, with polygon boxes
    8.5. def polygon_load_mosaic9 : Loads images in a 9-mosaic, with polygon boxes
    8.6. def polygon_verify_image_label : Verify one image-label pair for polygon datasets
    8.7. def create_dataloader : Has been modified to include polygon datasets

  9. utils/general.py :
    9.1. def xyxyxyxyn2xyxyxyxy : Convert normalized xyxyxyxy or segments into pixel xyxyxyxy or segments
    9.2. def polygon_segment2box : Convert 1 segment label to 1 polygon box label
    9.3. def polygon_segments2boxes : Convert segment labels to polygon box labels
    9.4. def polygon_scale_coords : Rescale polygon coords (xyxyxyxy) from img1_shape to img0_shape
    9.5. def polygon_clip_coords : Clip bounding polygon xyxyxyxy bounding boxes to image shape (height, width)
    9.6. def polygon_inter_union_cpu : iou computation (polygon) with cpu
    9.7. def polygon_box_iou : Compute iou of polygon boxes via cpu or cuda
    9.8. def polygon_b_inter_union_cpu : iou computation (polygon) with cpu for class Polygon_ComputeLoss in loss.py
    9.9. def polygon_bbox_iou : Compute iou of polygon boxes for class Polygon_ComputeLoss in loss.py via cpu or cuda
    9.10. def polygon_non_max_suppression : Runs Non-Maximum Suppression (NMS) on inference results for polygon boxes
    9.11. def polygon_nms_kernel : Non maximum suppression kernel for polygon-enabled boxes
    9.12. def order_corners : Return sorted corners for loss.py::class Polygon_ComputeLoss::build_targets

  10. utils/loss.py :
    10.1. class Polygon_ComputeLoss : Compute loss for polygon boxes

  11. utils/metrics.py :
    11.1. class Polygon_ConfusionMatrix : Polygon version of original ConfusionMatrix

  12. utils/plots.py :
    12.1. def polygon_plot_one_box : Plot one polygon box on image
    12.2. def polygon_plot_one_box_PIL : Plot one polygon box on image via PIL
    12.3. def polygon_output_to_target : Convert model output to target format (batch_id, class_id, x1, y1, x2, y2, x3, y3, x4, y4, conf)
    12.4. def polygon_plot_images : Polygon version of original plot_images
    12.5. def polygon_plot_test_txt : Polygon version of original plot_test_txt
    12.6. def polygon_plot_targets_txt : Polygon version of original plot_targets_txt
    12.7. def polygon_plot_labels : Polygon version of original plot_labels

  13. polygon_train.py : For training polygon-yolov5 models

  14. polygon_test.py : For testing polygon-yolov5 models

  15. polygon_detect.py : For detecting polygon-yolov5 models

  16. requirements.py : Added python model shapely

Section II. How Does Polygon Boxes Work? How Does Polygon Boxes Different from Axis-Aligned Boxes?

  1. build_targets in class Polygon_ComputeLoss & forward in class Polygon_Detect

2. order_corners in general.py

3. Illustrations of box loss of polygon boxes

Section III. Installation

For the CUDA extension to be successfully built without error, please use CUDA version >= 11.2. The codes have been verified in Ubuntu 16.04 with Tesla K80 GPU.

# The following codes install CUDA 11.2 from scratch on Ubuntu 16.04, if you have installed it, please ignore
# If you are using other versions of systems, please check https://tutorialforlinux.com/2019/12/01/how-to-add-cuda-repository-for-ubuntu-based-oses-2/
# Install Ubuntu kernel head
sudo apt install linux-headers-$(uname -r)

# Pinning CUDA repo wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-ubuntu1604.pin sudo mv cuda-ubuntu1604.pin /etc/apt/preferences.d/cuda-repository-pin-600
# Add CUDA GPG key sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
# Setting up CUDA repo sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/ /"
# Refresh apt repositories sudo apt update
# Installing CUDA 11.2 sudo apt install cuda-11-2 -y sudo apt install cuda-toolkit-11-2 -y
# Setting up path echo 'export PATH=/usr/local/cuda-11.2/bin${PATH:+:${PATH}}' >> $HOME/.bashrc # You are done installing CUDA 11.2
# Check NVIDIA nvidia-smi # Update all apts sudo apt-get update sudo apt-get -y upgrade
# Begin installing python 3.7 curl -o ~/miniconda.sh -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh chmod +x ~/miniconda.sh ./miniconda.sh -b echo "PATH=~/miniconda3/bin:$PATH" >> ~/.bashrc source ~/.bashrc conda install -y python=3.7 # You are done installing python

The following codes set you up with the Polygon Yolov5.

# clone git repo
git clone https://github.com/XinzeLee/PolygonObjectDetection
cd PolygonObjectDetection/polygon-yolov5
# install python package requirements
pip install -r requirements.txt
# install CUDA extensions
cd utils/iou_cuda
python setup.py install
# cd back to polygon-yolov5 folder
cd .. && cd ..

Section IV. Polygon-Tutorial 1: Deploy the Polygon Yolov5s

Try Polygon Yolov5s Model by Following Polygon-Tutorial 1

  1. Inference
     $ python polygon_detect.py --weights polygon-yolov5s-ucas.pt --img 1024 --conf 0.75 \
         --source data/images/UCAS-AOD --iou-thres 0.4 --hide-labels

  2. Test
     $ python polygon_test.py --weights polygon-yolov5s-ucas.pt --data polygon_ucas.yaml \
         --img 1024 --iou 0.65 --task val

  3. Train
     $ python polygon_train.py --weights polygon-yolov5s-ucas.pt --cfg polygon_yolov5s_ucas.yaml \
         --data polygon_ucas.yaml --hyp hyp.ucas.yaml --img-size 1024 \
         --epochs 3 --batch-size 12 --noautoanchor --polygon --cache
  4. Performance
    4.1. Confusion Matrix

    4.2. Precision Curve

    4.3. Recall Curve

    4.4. Precision-Recall Curve

    4.5. F1 Curve

Section V. Polygon-Tutorial 2: Transform COCO Dataset to Polygon Labels Using Segmentation

Transform COCO Dataset to Polygon Labels by Following Polygon-Tutorial 2

Transformed Exemplar Figure

Section VI. Expansion to More Than Four Corners


Section VII. References

Section VIII. Contributions

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published