Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Heap sort java #426

Merged
merged 6 commits into from
Oct 22, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 28 additions & 0 deletions Dynamic Programming/sub set sum/python/subSetSum.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
def isSubsetSum(set,n, sum) :

# Base Cases
if (sum == 0) :
return True
if (n == 0 and sum != 0) :
return False

# If last element is greater than
# sum, then ignore it
if (set[n - 1] > sum) :
return isSubsetSum(set, n - 1, sum)

# else, check if sum can be obtained
# by any of the following
# (a) including the last element
# (b) excluding the last element
return isSubsetSum(set, n-1, sum) or isSubsetSum(set, n-1, sum-set[n-1])


# Test case
set = [3, 34, 4, 12, 5, 2]
sum = 100
n = len(set)
if (isSubsetSum(set, n, sum) == True) :
print("Found a subset with given sum")
else :
print("No subset with given sum")
82 changes: 82 additions & 0 deletions Graphs/BinaryTree/java/binaryTree.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
class BinarySearchTree {

/* Class containing left and right child of current node and key value*/
class Node {
int key;
Node left, right;

public Node(int item) {
key = item;
left = right = null;
}
}

// Root of BST
Node root;

// Constructor
BinarySearchTree() {
root = null;
}

// This method mainly calls insertRec()
void insert(int key) {
root = insertRec(root, key);
}

/* A recursive function to insert a new key in BST */
Node insertRec(Node root, int key) {

/* If the tree is empty, return a new node */
if (root == null) {
root = new Node(key);
return root;
}

/* Otherwise, recur down the tree */
if (key < root.key)
root.left = insertRec(root.left, key);
else if (key > root.key)
root.right = insertRec(root.right, key);

/* return the (unchanged) node pointer */
return root;
}

// This method mainly calls InorderRec()
void inorder() {
inorderRec(root);
}

// A utility function to do inorder traversal of BST
void inorderRec(Node root) {
if (root != null) {
inorderRec(root.left);
System.out.println(root.key);
inorderRec(root.right);
}
}

// Driver Program to test above functions
public static void main(String[] args) {
BinarySearchTree tree = new BinarySearchTree();

/* Let us create following BST
50
/ \
30 70
/ \ / \
20 40 60 80 */
tree.insert(50);
tree.insert(30);
tree.insert(20);
tree.insert(40);
tree.insert(70);
tree.insert(60);
tree.insert(80);

// print inorder traversal of the BST
tree.inorder();
}
}
// This code is contributed by Ankur Narain Verma
64 changes: 64 additions & 0 deletions Graphs/BinaryTree/python/binaryTree.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
#Class which represents a node of binary tree
class Node:
def __init__(self,key):
self.left = None
self.right = None
self.val = key

#Function which add a key to binary tree
def insert(root,node):
if root is None:
root = node
else:
if root.val < node.val:
if root.right is None:
root.right = node
else:
insert(root.right, node)
else:
if root.left is None:
root.left = node
else:
insert(root.left, node)
#Function to do inorder tree traversal
def inorder(root):
if root:
inorder(root.left)
print(root.val)
inorder(root.right)

#Function for searching a key in the tree
def search(root,key):

# Base Cases: root is null or key is present at root
if root is None:
return False
elif root.val == key:
return True

# Key is greater than root's key
if root.val < key:
return search(root.right,key)

# Key is smaller than root's key
return search(root.left,key)


#Test case

r = Node(50)
insert(r,Node(30))
insert(r,Node(20))
insert(r,Node(40))
insert(r,Node(70))
insert(r,Node(60))
insert(r,Node(80))

print "Result of traversing"
inorder(r)


print "Is 25 in the tree?", search(r,25)
print "Is 30 in the tree?", search(r,30)
print "Is 2 in the tree?", search(r,2)

17 changes: 17 additions & 0 deletions Searching/Linear Search/java/linearSearch.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
class LinearSearch
{
// This function returns index of element x in arr[]
static int search(int arr[], int n, int x)
{
for (int i = 0; i < n; i++)
{
// Return the index of the element if the element
// is found
if (arr[i] == x)
return i;
}

// return -1 if the element is not found
return -1;
}
}
Empty file.
57 changes: 57 additions & 0 deletions data structures/stack/java/stack.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
import java.io.*;
import java.util.*;

class Test
{
// Pushing element on the top of the stack
static void stack_push(Stack<Integer> stack)
{
for(int i = 0; i < 5; i++)
{
stack.push(i);
}
}

// Popping element from the top of the stack
static void stack_pop(Stack<Integer> stack)
{
System.out.println("Pop :");

for(int i = 0; i < 5; i++)
{
Integer y = (Integer) stack.pop();
System.out.println(y);
}
}

// Displaying element on the top of the stack
static void stack_peek(Stack<Integer> stack)
{
Integer element = (Integer) stack.peek();
System.out.println("Element on stack top : " + element);
}

// Searching element in the stack
static void stack_search(Stack<Integer> stack, int element)
{
Integer pos = (Integer) stack.search(element);

if(pos == -1)
System.out.println("Element not found");
else
System.out.println("Element is found at position " + pos);
}


public static void main (String[] args)
{
Stack<Integer> stack = new Stack<Integer>();

stack_push(stack);
stack_pop(stack);
stack_push(stack);
stack_peek(stack);
stack_search(stack, 2);
stack_search(stack, 6);
}
}