Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
298 changes: 66 additions & 232 deletions ciphers/caesar_cipher.py
Original file line number Diff line number Diff line change
@@ -1,256 +1,90 @@
from __future__ import annotations
"""
Caesar Cipher Algorithm

from string import ascii_letters
The Caesar cipher is one of the simplest and most widely known encryption techniques.
It works by shifting each letter in the plaintext by a fixed number of positions
down or up the alphabet.

Example:
>>> encrypt("abc", 2)
'cde'
>>> decrypt("cde", 2)
'abc'

def encrypt(input_string: str, key: int, alphabet: str | None = None) -> str:
"""
encrypt
=======
You can also encrypt/decrypt with uppercase letters:
>>> encrypt("Hello, World!", 3)
'Khoor, Zruog!'
>>> decrypt("Khoor, Zruog!", 3)
'Hello, World!'

Encodes a given string with the caesar cipher and returns the encoded
message
Reference:
https://en.wikipedia.org/wiki/Caesar_cipher
"""

Parameters:
-----------
from string import ascii_lowercase, ascii_uppercase

* `input_string`: the plain-text that needs to be encoded
* `key`: the number of letters to shift the message by

Optional:
def encrypt(text: str, shift: int) -> str:
"""
Encrypt the given text using Caesar cipher.

* `alphabet` (``None``): the alphabet used to encode the cipher, if not
specified, the standard english alphabet with upper and lowercase
letters is used
Args:
text: The input text to encrypt.
shift: The number of positions to shift each letter.

Returns:

* A string containing the encoded cipher-text

More on the caesar cipher
=========================

The caesar cipher is named after Julius Caesar who used it when sending
secret military messages to his troops. This is a simple substitution cipher
where every character in the plain-text is shifted by a certain number known
as the "key" or "shift".

Example:
Say we have the following message:
``Hello, captain``

And our alphabet is made up of lower and uppercase letters:
``abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ``

And our shift is ``2``

We can then encode the message, one letter at a time. ``H`` would become ``J``,
since ``J`` is two letters away, and so on. If the shift is ever two large, or
our letter is at the end of the alphabet, we just start at the beginning
(``Z`` would shift to ``a`` then ``b`` and so on).

Our final message would be ``Jgnnq, ecrvckp``

Further reading
===============

* https://en.m.wikipedia.org/wiki/Caesar_cipher

Doctests
========

>>> encrypt('The quick brown fox jumps over the lazy dog', 8)
'bpm yCqks jzwEv nwF rCuxA wDmz Bpm tiHG lwo'

>>> encrypt('A very large key', 8000)
's nWjq dSjYW cWq'

>>> encrypt('a lowercase alphabet', 5, 'abcdefghijklmnopqrstuvwxyz')
'f qtbjwhfxj fqumfgjy'
The encrypted text as a string.

>>> encrypt("abc", 1)
'bcd'
>>> encrypt("xyz", 3)
'abc'
>>> encrypt("Hello, World!", 5)
'Mjqqt, Btwqi!'
"""
# Set default alphabet to lower and upper case english chars
alpha = alphabet or ascii_letters

# The final result string
result = ""

for character in input_string:
if character not in alpha:
# Append without encryption if character is not in the alphabet
result += character
if not isinstance(text, str):
raise TypeError("Text must be a string.")
if not isinstance(shift, int):
raise TypeError("Shift must be an integer.")

result = []

for char in text:
if char in ascii_lowercase:
index = (ascii_lowercase.index(char) + shift) % 26
result.append(ascii_lowercase[index])
elif char in ascii_uppercase:
index = (ascii_uppercase.index(char) + shift) % 26
result.append(ascii_uppercase[index])
else:
# Get the index of the new key and make sure it isn't too large
new_key = (alpha.index(character) + key) % len(alpha)
result.append(char)

# Append the encoded character to the alphabet
result += alpha[new_key]
return "".join(result)

return result


def decrypt(input_string: str, key: int, alphabet: str | None = None) -> str:
def decrypt(text: str, shift: int) -> str:
"""
decrypt
=======

Decodes a given string of cipher-text and returns the decoded plain-text
Decrypt the given text encrypted with Caesar cipher.

Parameters:
-----------

* `input_string`: the cipher-text that needs to be decoded
* `key`: the number of letters to shift the message backwards by to decode

Optional:

* `alphabet` (``None``): the alphabet used to decode the cipher, if not
specified, the standard english alphabet with upper and lowercase
letters is used
Args:
text: The encrypted text to decrypt.
shift: The number of positions originally used to encrypt.

Returns:

* A string containing the decoded plain-text

More on the caesar cipher
=========================

The caesar cipher is named after Julius Caesar who used it when sending
secret military messages to his troops. This is a simple substitution cipher
where very character in the plain-text is shifted by a certain number known
as the "key" or "shift". Please keep in mind, here we will be focused on
decryption.

Example:
Say we have the following cipher-text:
``Jgnnq, ecrvckp``

And our alphabet is made up of lower and uppercase letters:
``abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ``

And our shift is ``2``

To decode the message, we would do the same thing as encoding, but in
reverse. The first letter, ``J`` would become ``H`` (remember: we are decoding)
because ``H`` is two letters in reverse (to the left) of ``J``. We would
continue doing this. A letter like ``a`` would shift back to the end of
the alphabet, and would become ``Z`` or ``Y`` and so on.

Our final message would be ``Hello, captain``

Further reading
===============

* https://en.m.wikipedia.org/wiki/Caesar_cipher

Doctests
========

>>> decrypt('bpm yCqks jzwEv nwF rCuxA wDmz Bpm tiHG lwo', 8)
'The quick brown fox jumps over the lazy dog'

>>> decrypt('s nWjq dSjYW cWq', 8000)
'A very large key'

>>> decrypt('f qtbjwhfxj fqumfgjy', 5, 'abcdefghijklmnopqrstuvwxyz')
'a lowercase alphabet'
"""
# Turn on decode mode by making the key negative
key *= -1

return encrypt(input_string, key, alphabet)


def brute_force(input_string: str, alphabet: str | None = None) -> dict[int, str]:
The decrypted text as a string.

>>> decrypt("bcd", 1)
'abc'
>>> decrypt("abc", 3)
'xyz'
>>> decrypt("Mjqqt, Btwqi!", 5)
'Hello, World!'
"""
brute_force
===========

Returns all the possible combinations of keys and the decoded strings in the
form of a dictionary

Parameters:
-----------

* `input_string`: the cipher-text that needs to be used during brute-force

Optional:

* `alphabet` (``None``): the alphabet used to decode the cipher, if not
specified, the standard english alphabet with upper and lowercase
letters is used

More about brute force
======================

Brute force is when a person intercepts a message or password, not knowing
the key and tries every single combination. This is easy with the caesar
cipher since there are only all the letters in the alphabet. The more
complex the cipher, the larger amount of time it will take to do brute force

Ex:
Say we have a ``5`` letter alphabet (``abcde``), for simplicity and we intercepted
the following message: ``dbc``,
we could then just write out every combination:
``ecd``... and so on, until we reach a combination that makes sense:
``cab``

Further reading
===============

* https://en.wikipedia.org/wiki/Brute_force

Doctests
========

>>> brute_force("jFyuMy xIH'N vLONy zILwy Gy!")[20]
"Please don't brute force me!"

>>> brute_force(1)
Traceback (most recent call last):
TypeError: 'int' object is not iterable
"""
# Set default alphabet to lower and upper case english chars
alpha = alphabet or ascii_letters

# To store data on all the combinations
brute_force_data = {}

# Cycle through each combination
for key in range(1, len(alpha) + 1):
# Decrypt the message and store the result in the data
brute_force_data[key] = decrypt(input_string, key, alpha)

return brute_force_data
return encrypt(text, -shift)


if __name__ == "__main__":
while True:
print(f"\n{'-' * 10}\n Menu\n{'-' * 10}")
print(*["1.Encrypt", "2.Decrypt", "3.BruteForce", "4.Quit"], sep="\n")

# get user input
choice = input("\nWhat would you like to do?: ").strip() or "4"

# run functions based on what the user chose
if choice not in ("1", "2", "3", "4"):
print("Invalid choice, please enter a valid choice")
elif choice == "1":
input_string = input("Please enter the string to be encrypted: ")
key = int(input("Please enter off-set: ").strip())

print(encrypt(input_string, key))
elif choice == "2":
input_string = input("Please enter the string to be decrypted: ")
key = int(input("Please enter off-set: ").strip())

print(decrypt(input_string, key))
elif choice == "3":
input_string = input("Please enter the string to be decrypted: ")
brute_force_data = brute_force(input_string)

for key, value in brute_force_data.items():
print(f"Key: {key} | Message: {value}")
import doctest

elif choice == "4":
print("Goodbye.")
break
doctest.testmod()
print("✅ All doctests passed!")