Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
246 changes: 246 additions & 0 deletions HW01/WANGSHUO_HW1.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,246 @@
# Numerical Operations
import math
import numpy as np

# # Reading/Writing Data
import pandas as pd
import os
import csv
#
# # For Progress Bar
from tqdm import tqdm

# Pytorch
import torch
import torch.nn as nn
import torch.utils.data
import torchvision
from torch import nn
from torch.utils.data import Dataset, DataLoader, random_split

# For plotting learning curve
from torch.utils.tensorboard import SummaryWriter

# https://drive.google.com/uc?export=download&id=1kLSW_-cW2Huj7bh84YTdimGBOJaODiOS
# https://drive.google.com/uc?export=download&id=1iiI5qROrAhZn-o4FPqsE97bMzDEFvIdg
# !gdown --id '1kLSW_-cW2Huj7bh84YTdimGBOJaODiOS' --output covid.train.csv
# !gdown --id '1iiI5qROrAhZn-o4FPqsE97bMzDEFvIdg' --output covid.test.csv

def same_seed(seed):
'''Fixes random number generator seeds for reproducibility.'''
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)


def train_valid_split(data_set, valid_ratio, seed):
'''Split provided training data into training set and validation set'''
valid_set_size = int(valid_ratio * len(data_set))
train_set_size = len(data_set) - valid_set_size
train_set, valid_set = random_split(data_set, [train_set_size, valid_set_size],
generator=torch.Generator().manual_seed(seed))
return np.array(train_set), np.array(valid_set)


def predict(test_loader, model, device):
model.eval() # Set your model to evaluation mode.
preds = []
for x in tqdm(test_loader):
x = x.to(device)
with torch.no_grad():
pred = model(x)
preds.append(pred.detach().cpu())
preds = torch.cat(preds, dim=0).numpy()
return preds


class COVID19Dataset(Dataset):
'''
x: Features.
y: Targets, if none, do prediction.
'''

def __init__(self, x, y=None):
if y is None:
self.y = y
else:
self.y = torch.FloatTensor(y)
self.x = torch.FloatTensor(x)

def __getitem__(self, idx):
if self.y is None:
return self.x[idx]
else:
return self.x[idx], self.y[idx]

def __len__(self):
return len(self.x)


class My_Model(nn.Module):
def __init__(self, input_dim):
super(My_Model, self).__init__()
# TODO: modify model's structure, be aware of dimensions.
self.layers = nn.Sequential(
nn.Linear(input_dim, 64),
nn.ReLU(),
nn.Linear(64, 16),
nn.ReLU(),
nn.Linear(16, 1)
)

def forward(self, x):
x = self.layers(x)
x = x.squeeze(1) # (B, 1) -> (B)
return x


def select_feat(train_data, valid_data, test_data, select_all=True):
'''Selects useful features to perform regression'''
y_train, y_valid = train_data[:, -1], valid_data[:, -1]
raw_x_train, raw_x_valid, raw_x_test = train_data[:, :-1], valid_data[:, :-1], test_data

if select_all:
feat_idx = list(range(raw_x_train.shape[1]))
else:
# feat_idx = [0, 1, 2, 3, 4] # TODO: Select suitable feature columns.
# 相关性大于0.8的特征
feat_idx = list(range(1, 38)) + [38, 39, 40, 41, 53, 54, 55, 56, 57, 69, 70, 71, 72, 73, 85, 86, 87, 88, 89, 101, 102, 103, 104, 105]
# feat_idx = list(range(1, 38)) + [53, 69, 85, 101]

return raw_x_train[:, feat_idx], raw_x_valid[:, feat_idx], raw_x_test[:, feat_idx], y_train, y_valid


def trainer(train_loader, valid_loader, model, config, device):
criterion = nn.MSELoss(reduction='mean') # Define your loss function, do not modify this.

# Define your optimization algorithm.
# TODO: Please check https://pytorch.org/docs/stable/optim.html to get more available algorithms.
# TODO: L2 regularization (optimizer(weight decay...) or implement by your self).
# optimizer = torch.optim.SGD(model.parameters(), lr=config['learning_rate'], momentum=0.9)
# optimizer = torch.optim.AdamW(model.parameters(), lr=config['learning_rate'], weight_decay=0.08)
optimizer = torch.optim.Adam(model.parameters(), lr=config['learning_rate'] * 100, weight_decay=1e-3)

writer = SummaryWriter() # Writer of tensoboard.

if not os.path.isdir('./models'):
os.mkdir('./models') # Create directory of saving models.

n_epochs, best_loss, step, early_stop_count = config['n_epochs'], math.inf, 0, 0

for epoch in range(n_epochs):
model.train() # Set your model to train mode.
loss_record = []

# tqdm is a package to visualize your training progress.
train_pbar = tqdm(train_loader, position=0, leave=True)

for x, y in train_pbar:
optimizer.zero_grad() # Set gradient to zero.
x, y = x.to(device), y.to(device) # Move your data to device.
pred = model(x)
loss = criterion(pred, y)
loss.backward() # Compute gradient(backpropagation).
optimizer.step() # Update parameters.
step += 1
loss_record.append(loss.detach().item())

# Display current epoch number and loss on tqdm progress bar.
train_pbar.set_description(f'Epoch [{epoch + 1}/{n_epochs}]')
train_pbar.set_postfix({'loss': loss.detach().item()})

mean_train_loss = sum(loss_record) / len(loss_record)
writer.add_scalar('Loss/train', mean_train_loss, step)

model.eval() # Set your model to evaluation mode.
loss_record = []
for x, y in valid_loader:
x, y = x.to(device), y.to(device)
with torch.no_grad():
pred = model(x)
loss = criterion(pred, y)

loss_record.append(loss.item())

mean_valid_loss = sum(loss_record) / len(loss_record)
print(f'Epoch [{epoch + 1}/{n_epochs}]: Train loss: {mean_train_loss:.4f}, Valid loss: {mean_valid_loss:.4f}')
writer.add_scalar('Loss/valid', mean_valid_loss, step)

if mean_valid_loss < best_loss:
best_loss = mean_valid_loss
torch.save(model.state_dict(), config['save_path']) # Save your best model
print('Saving model with loss {:.3f}...'.format(best_loss))
early_stop_count = 0
else:
early_stop_count += 1

if early_stop_count >= config['early_stop']:
print('\nModel is not improving, so we halt the training session.')
return


def save_pred(preds, file):
''' Save predictions to specified file '''
with open(file, 'w') as fp:
writer = csv.writer(fp)
writer.writerow(['id', 'tested_positive'])
for i, p in enumerate(preds):
writer.writerow([i, p])


# 按间距中的绿色按钮以运行脚本。
if __name__ == '__main__':
device = 'cuda' if torch.cuda.is_available() else 'cpu'
config = {
'seed': 617, # 制定模型的随即种子以保证模型的可恢复性。Your seed number, you can pick your lucky number. :)
'select_all': False, # Whether to use all features.
'valid_ratio': 0.2, # validation_size = train_size * valid_ratio
'n_epochs': 3000, # Number of epochs.
'batch_size': 128,
'learning_rate': 1e-5,
'early_stop': 400,
# If model has not improved for this many consecutive epochs, stop training. 任一时刻连续400次没有模型训练降低loss,就会提前停止。
'save_path': './models/model.ckpt' # Your model will be saved here.
}

# Set seed for reproducibility
same_seed(config['seed'])

# train_data size: 2699 x 118 (id + 37 states + 16 features x 5 days)
# test_data size: 1078 x 117 (without last day's positive rate)
train_data, test_data = pd.read_csv('./covid.train_new.csv').values, pd.read_csv('./covid.test_un.csv').values
train_data, valid_data = train_valid_split(train_data, config['valid_ratio'], config['seed']) # 按照k折交叉验证法分成训练集和验证集

# Print out the data size.
print(f"""train_data size: {train_data.shape}
valid_data size: {valid_data.shape}
test_data size: {test_data.shape}""")

# Select features
x_train, x_valid, x_test, y_train, y_valid = select_feat(train_data, valid_data, test_data, config['select_all'])

# Print out the number of features.
print(f'number of features: {x_train.shape[1]}')

train_dataset, valid_dataset, test_dataset = COVID19Dataset(x_train, y_train), \
COVID19Dataset(x_valid, y_valid), \
COVID19Dataset(x_test)

# 用统一的Pytorch加载器包装待处理数据 Pytorch data loader loads pytorch dataset into batches.
train_loader = DataLoader(train_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True)
valid_loader = DataLoader(valid_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True)
test_loader = DataLoader(test_dataset, batch_size=config['batch_size'], shuffle=False, pin_memory=True)

model = My_Model(input_dim=x_train.shape[1]).to(device) # put your model and data on the same computation device.
trainer(train_loader, valid_loader, model, config, device)

# %reload_ext tensorboard
# %tensorboard --logdir=./runs/

model = My_Model(input_dim=x_train.shape[1]).to(device)
model.load_state_dict(torch.load(config['save_path'])) # 加载你保存好的best model
preds = predict(test_loader, model, device)
save_pred(preds, 'pred.csv')
Binary file added HW01/WANGSHUO_HW1_LOSS_RESULT.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading