Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
39 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions HW01/Test.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
# 一些GIT问题
https://blog.csdn.net/appleyuchi/article/details/102766591
https://blog.csdn.net/huhao820/article/details/120308442?spm=1001.2101.3001.6661.1&utm_medium=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-120308442-blog-124432254.pc_relevant_aa&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-120308442-blog-124432254.pc_relevant_aa&utm_relevant_index=1
1,079 changes: 1,079 additions & 0 deletions HW01/covid.test_un.csv

Large diffs are not rendered by default.

2,700 changes: 2,700 additions & 0 deletions HW01/covid.train_new.csv

Large diffs are not rendered by default.

14 changes: 14 additions & 0 deletions HW01/洪钦敏-HW1/config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
version = 21
config = {
'seed': 1, # Your seed number, you can pick your lucky number. :)
'select_all': False, # Whether to use all features.
'valid_ratio': 0.2, # validation_size = train_size * valid_ratio
'n_epochs': 10000, # Number of epochs.
'batch_size': 100,
'learning_rate': 1e-4,
'weight_decay': 1e-3,
'feature_k': 20,
'early_stop': 3000, # If model has not improved for this many consecutive epochs, stop training.
'save_path': './models/model-v%d.ckpt' % version, # Your model will be saved here.
'pred_path': 'pred-v%d.csv' % version # Your model will be saved here.
}
1,079 changes: 1,079 additions & 0 deletions HW01/洪钦敏-HW1/covid.test.csv

Large diffs are not rendered by default.

2,700 changes: 2,700 additions & 0 deletions HW01/洪钦敏-HW1/covid.train.csv

Large diffs are not rendered by default.

25 changes: 25 additions & 0 deletions HW01/洪钦敏-HW1/dataset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
import torch
from torch.utils.data import Dataset


class COVID19Dataset(Dataset):
'''
x: Features.
y: Targets, if none, do prediction.
'''

def __init__(self, x, y=None):
if y is None:
self.y = y
else:
self.y = torch.FloatTensor(y)
self.x = torch.FloatTensor(x)

def __getitem__(self, idx):
if self.y is None:
return self.x[idx]
else:
return self.x[idx], self.y[idx]

def __len__(self):
return len(self.x)
44 changes: 44 additions & 0 deletions HW01/洪钦敏-HW1/learnw.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
import numpy as np

w = 1.2
b = 0.5

dataset = [
[0.2, 1],
[0.7, 0.25],
[0.6, 1.1],
[1.2, 5.2],
[1.3, 3.1],
]

origin = np.array(dataset)
x = origin[:, 0]
y = origin[:, 1]
print(f'x:{x} y:{y}')
# 计算第一次的y
y1 = w * x + b
print('y1', y1)
size = y.size
mse = ((y1 - y) ** 2).sum() / size
print(mse)
# cost函数求导

dw = 2 * (w * (x ** 2).sum() - ((y - b) * x).sum())
db = 2 * (size * b - ((y - w * x).sum()))
print(f'dw:{dw} db:{db}')
num = 0
lr = 1e-3
while dw != 0 or db != 0:
w = w - lr * dw
b = b - lr * db
dw = 2 * (w * (x ** 2).sum() - ((y - b) * x).sum())
db = 2 * (size * b - ((y - w * x).sum()))
num += 1
if num > 10000:
break

print(num)
print(w)
print(b)
mse = ((w * x + b - y) ** 2).sum() / size
print(mse)
98 changes: 98 additions & 0 deletions HW01/洪钦敏-HW1/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
# Numerical Operations
import math
import time

import numpy as np

# Reading/Writing Data
import pandas as pd
import os
import csv

# For Progress Bar
from tqdm import tqdm

# Pytorch
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
# random_split随机将一个数据集分割成给定长度的不重叠的新数据集。可选择固定生成器以获得可复现的结果

from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import f_regression
# For plotting learning curve
from torch.utils.tensorboard import SummaryWriter

from utility import *
from config import config
from dataset import COVID19Dataset
from model import trainer, My_Model

device = 'cuda' if torch.cuda.is_available() else 'cpu'


# Choose features you deem useful by modifying the function below.
def select_feat(train_data, valid_data, test_data, select_all=True, feature_idx=None):
'''Selects useful features to perform regression'''
y_train, y_valid = train_data[:, -1], valid_data[:, -1]
raw_x_train, raw_x_valid, raw_x_test = train_data[:, :-1], valid_data[:, :-1], test_data

if select_all:
feat_idx = list(range(raw_x_train.shape[1]))
else:
# feat_idx = list(range(raw_x_train.shape[1]))[1:] # TODO: Select suitable feature columns.
feat_idx = feature_idx
# print(feat_idx)

return raw_x_train[:, feat_idx], raw_x_valid[:, feat_idx], raw_x_test[:, feat_idx], y_train, y_valid


if __name__ == '__main__':
# Set seed for reproducibility
same_seed(config['seed'])

features = pd.read_csv('./covid.train.csv')
x_data, y_data = features.iloc[:, :-1], features.iloc[:, -1]
k=config['feature_k']
selector = SelectKBest(score_func=f_regression, k=config['feature_k'])
result = selector.fit(x_data, y_data)
idx = np.argsort(result.scores_)[::-1]
print(x_data.columns[idx[:k]])
feature_idx = list(np.sort(idx[:k]))
print(feature_idx)
time.sleep(3)

# train_data size: 2699 x 118 (id + 37 states + 16 features x 5 days)
# test_data size: 1078 x 117 (without last day's positive rate)
train_data, test_data = pd.read_csv('./covid.train.csv').values, pd.read_csv('./covid.test.csv').values
train_data, valid_data = train_valid_split(train_data, config['valid_ratio'], config['seed'])

# Print out the data size.
print(f"""train_data size: {train_data.shape}
valid_data size: {valid_data.shape}
test_data size: {test_data.shape}""")

# Select features
x_train, x_valid, x_test, y_train, y_valid = select_feat(train_data, valid_data, test_data, config['select_all'],
feature_idx)

# Print out the number of features.
print(f'number of features: {x_train.shape[1]}')

# init dataset
train_dataset = COVID19Dataset(x_train, y_train)
valid_dataset = COVID19Dataset(x_valid, y_valid)
test_dataset = COVID19Dataset(x_test)

# Pytorch data loader loads pytorch dataset into batches.
train_loader = DataLoader(train_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True)
valid_loader = DataLoader(valid_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True)
test_loader = DataLoader(test_dataset, batch_size=config['batch_size'], shuffle=False, pin_memory=True)

model = My_Model(input_dim=x_train.shape[1]).to(device) # put your model and data on the same computation device.
trainer(train_loader, valid_loader, model, config, device)

model = My_Model(input_dim=x_train.shape[1]).to(device)
model.load_state_dict(torch.load(config['save_path']))
preds = predict(test_loader, model, device)
save_pred(preds, config['pred_path'])
124 changes: 124 additions & 0 deletions HW01/洪钦敏-HW1/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
import math
import os

import torch
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm


# tensorboard --logdir=D:\projects\ML2022-Spring\HW01\洪钦敏-HW1\runs
class My_Model(nn.Module):
def __init__(self, input_dim):
super(My_Model, self).__init__()
d1 = 64
d2 = 16
d3 = 8
layer = 2
# TODO: modify model's structure, be aware of dimensions.
if 3 == layer:
self.layers = nn.Sequential(
# nn.BatchNorm1d(input_dim),
nn.Linear(input_dim, d1),
nn.ReLU(),
# nn.LeakyReLU(0.2),
nn.Dropout(0.2),
nn.Linear(d1, d2),
# nn.ReLU(),
nn.LeakyReLU(),
# nn.Dropout(0.2),
nn.Linear(d2, 1)
)
elif 2 == layer:
self.layers = nn.Sequential(
# 重要的改动 https://blog.csdn.net/qq_23262411/article/details/100175943
# 然而没啥用貌似
# nn.BatchNorm1d(input_dim),
nn.Linear(input_dim, d1),
# nn.BatchNorm1d(d1),
nn.LeakyReLU(),
# nn.Dropout(0.2),
nn.Linear(d1, 1)
)
elif 1 == layer:
self.layers = nn.Sequential(
nn.BatchNorm1d(input_dim),
nn.Linear(input_dim, 1)
)

def forward(self, x):
x = self.layers(x)
x = x.squeeze(1) # (B, 1) -> (B)
return x


def trainer(train_loader, valid_loader, model, config, device):
criterion = nn.MSELoss(reduction='mean') # Define your loss function, do not modify this.

# Define your optimization algorithm.
# TODO: Please check https://pytorch.org/docs/stable/optim.html to get more available algorithms.
# TODO: L2 regularization (optimizer(weight decay...) or implement by your self).
# optimizer = torch.optim.SGD(model.parameters(), lr=config['learning_rate'], momentum=0.9)
# optimizer = torch.optim.ASGD(model.parameters(), lr=config['learning_rate'])
# optimizer = torch.optim.SGD(model.parameters(), lr=config['learning_rate'], momentum=0.9, weight_decay=config['weight_decay'])
optimizer = torch.optim.Adam(model.parameters(), betas=[0.9, 0.999], lr=config['learning_rate'], eps=1e-6,
weight_decay=config['weight_decay'])

writer = SummaryWriter() # Writer of tensoboard.

if not os.path.isdir('./models'):
os.mkdir('./models') # Create directory of saving models.

n_epochs, best_loss, step, early_stop_count = config['n_epochs'], math.inf, 0, 0

for epoch in range(n_epochs):
model.train() # Set your model to train mode.
loss_record = []

# tqdm is a package to visualize your training progress.
train_pbar = tqdm(train_loader, position=0, leave=True)

for x, y in train_pbar:
optimizer.zero_grad() # Set gradient to zero.
x, y = x.to(device), y.to(device) # Move your data to device.
pred = model(x)
loss = criterion(pred, y)
loss.backward() # Compute gradient(backpropagation).
optimizer.step() # Update parameters.
step += 1
loss_record.append(loss.detach().item())

# Display current epoch number and loss on tqdm progress bar.
train_pbar.set_description(f'Epoch [{epoch + 1}/{n_epochs}]')
train_pbar.set_postfix({'loss': loss.detach().item()})

mean_train_loss = sum(loss_record) / len(loss_record)
writer.add_scalar('Loss/train', mean_train_loss, step)

model.eval() # Set your model to evaluation mode.
loss_record = []
for x, y in valid_loader:
x, y = x.to(device), y.to(device)
# 验证的时候无需计算梯度下降
with torch.no_grad():
pred = model(x)
loss = criterion(pred, y)

loss_record.append(loss.item())

mean_valid_loss = sum(loss_record) / len(loss_record)
print(f'Epoch [{epoch + 1}/{n_epochs}]: Train loss: {mean_train_loss:.4f}, Valid loss: {mean_valid_loss:.4f}')
writer.add_scalar('Loss/valid', mean_valid_loss, step)

if mean_valid_loss < best_loss:
best_loss = mean_valid_loss
torch.save(model.state_dict(), config['save_path']) # Save your best model
print('Saving model with loss {:.3f}...'.format(best_loss))
early_stop_count = 0
else:
early_stop_count += 1

# 训练一定次数后没有更好的loss 则退出训练
if early_stop_count >= config['early_stop']:
print('\nModel is not improving, so we halt the training session.')
return
Loading