-
Notifications
You must be signed in to change notification settings - Fork 58
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
934d1d3
commit ccddfb9
Showing
4 changed files
with
216 additions
and
54 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from .pipeline import Pipeline |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
from itertools import islice | ||
from tqdm import tqdm | ||
import time | ||
|
||
from KD_Lib.common import BaseClass | ||
|
||
|
||
class Pipeline(): | ||
""" | ||
Pipeline of knowledge distillation, pruning and quantization methods | ||
supported by KD_Lib. Sequentially applies a list of methods on the student model. | ||
All the elements in list must implement either train_student, prune or quantize | ||
methods. | ||
:param: steps (list) list of KD_Lib.KD or KD_Lib.Pruning or KD_Lib.Quantization | ||
:param: epochs (int) number of iterations through whole batch for each method in | ||
list | ||
:param: plot_losses (bool) Plot a graph of losses during training | ||
:param: save_model (bool) Save model after performing the list methods | ||
:param: save_model_pth (str) Path where model is saved if save_model is True | ||
:param: verbose (int) Verbose | ||
""" | ||
def __init__( | ||
self, | ||
steps, | ||
epochs=5, | ||
plot_losses=True, | ||
save_model=True, | ||
save_model_pth="./models/student.pt", | ||
verbose=0): | ||
self.steps = steps | ||
self.device = device | ||
self.verbose = verbose | ||
|
||
self.plot_losses = plot_losses | ||
self.save_model = save_model | ||
self.save_model_path = save_model_pth | ||
self._validate_steps() | ||
self.epochs = epochs | ||
|
||
def _validate_steps(self): | ||
name, process = zip(*self.steps) | ||
|
||
for t in process: | ||
if (not hasattr(t, ('train_student', 'prune', 'quantize'))): | ||
raise TypeError("All the steps must support at least one of " | ||
"train_student, prune or quantize method, {} is not" | ||
" supported yet".format(str(t))) | ||
|
||
def get_steps(self): | ||
return self.steps | ||
|
||
def _iter(self, num_steps=-1): | ||
_length = len(self.steps) if num_steps == -1 else num_steps | ||
|
||
for idx, (name, process) in enumerate(islice(self.steps, 0, _length)): | ||
yield idx, name, process | ||
|
||
def _fit(self): | ||
|
||
if self.verbose: | ||
pbar = tqdm(total=len(self)) | ||
|
||
for idx, name, process in self._iter(): | ||
print("Starting {}".format(name)) | ||
if idx != 0: | ||
if hasattr(process, 'train_student'): | ||
if hasattr(self.steps[idx-1], 'train_student'): | ||
process.student_model = self.steps[idx-1].student_model | ||
else: | ||
process.student_model = self.steps[idx-1].model | ||
t1 = time.time() | ||
if hasattr(process, 'train_student'): | ||
process.train_student(self.epochs, self.plot_losses, self.save_model, self.save_model_path) | ||
elif hasattr(proces, 'prune'): | ||
process.prune() | ||
elif hasattr(process, 'quantize'): | ||
process.quantize() | ||
else: | ||
raise TypeError("{} is not supported by the pipeline yet." | ||
.format(process)) | ||
|
||
t2 = time.time() - t1 | ||
print("{} completed in {}hr {}min {}s".format(name, t2 // (60 * 60), t2 // 60, t2 % 60) | ||
|
||
if self.verbose: | ||
pbar.update(1) | ||
|
||
if self.verbose: | ||
pbar.close() | ||
|
||
def train(self): | ||
""" | ||
Train the (student) model sequentially through the list. | ||
""" | ||
self._validate_steps() | ||
|
||
t1 = time.time() | ||
self._fit() | ||
t2 = time.time() - t1 | ||
print("Pipeline execution completed in {}hr {}min {}s".format(t2 // (60 * 60), t2 // 60, t2 % 60) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -13,67 +13,74 @@ | |
LONG_DESCRIPTION = f.read() | ||
|
||
# Define the keywords | ||
KEYWORDS = ["Knowledge Distillation", "Pruning", "Quantization", "pytorch", "machine learning", "deep learning"] | ||
KEYWORDS = [ | ||
"Knowledge Distillation", | ||
"Pruning", | ||
"Quantization", | ||
"pytorch", | ||
"machine learning", | ||
"deep learning", | ||
] | ||
REQUIRE_PATH = "requirements.txt" | ||
PROJECT = os.path.abspath(os.path.dirname(__file__)) | ||
setup_requirements = ['pytest-runner'] | ||
setup_requirements = ["pytest-runner"] | ||
|
||
test_requirements = ['pytest', 'pytest-cov'] | ||
test_requirements = ["pytest", "pytest-cov"] | ||
|
||
requirements = [ | ||
'pip==19.3.1', | ||
'transformers==4.6.1', | ||
'sacremoses', | ||
'tokenizers==0.10.1', | ||
'huggingface-hub==0.0.8', | ||
'torchtext==0.9.1', | ||
'bumpversion==0.5.3', | ||
'wheel==0.32.1', | ||
'watchdog==0.9.0', | ||
'flake8==3.5.0', | ||
'tox==3.5.2', | ||
'coverage==4.5.1', | ||
'Sphinx==1.8.1', | ||
'twine==1.12.1', | ||
'pytest==3.8.2', | ||
'pytest-runner==4.2', | ||
'pytest-cov==2.6.1', | ||
'matplotlib==3.2.1', | ||
'torch==1.8.1', | ||
'torchvision==0.9.1', | ||
'tensorboard==2.2.1', | ||
'contextlib2==0.6.0.post1', | ||
'pandas==1.0.1', | ||
'tqdm==4.42.1', | ||
'numpy==1.18.1', | ||
'sphinx-rtd-theme==0.5.0', | ||
"pip==19.3.1", | ||
"transformers==4.6.1", | ||
"sacremoses", | ||
"tokenizers==0.10.1", | ||
"huggingface-hub==0.0.8", | ||
"torchtext==0.9.1", | ||
"bumpversion==0.5.3", | ||
"wheel==0.32.1", | ||
"watchdog==0.9.0", | ||
"flake8==3.5.0", | ||
"tox==3.5.2", | ||
"coverage==4.5.1", | ||
"Sphinx==1.8.1", | ||
"twine==1.12.1", | ||
"pytest==3.8.2", | ||
"pytest-runner==4.2", | ||
"pytest-cov==2.6.1", | ||
"matplotlib==3.2.1", | ||
"torch==1.8.1", | ||
"torchvision==0.9.1", | ||
"tensorboard==2.2.1", | ||
"contextlib2==0.6.0.post1", | ||
"pandas==1.0.1", | ||
"tqdm==4.42.1", | ||
"numpy==1.18.1", | ||
"sphinx-rtd-theme==0.5.0", | ||
] | ||
|
||
|
||
if __name__ == "__main__": | ||
setup( | ||
author="Het Shah", | ||
author_email='[email protected]', | ||
classifiers=[ | ||
'Development Status :: 2 - Pre-Alpha', | ||
'Intended Audience :: Developers', | ||
'License :: OSI Approved :: MIT License', | ||
'Natural Language :: English', | ||
'Programming Language :: Python :: 3.6', | ||
'Programming Language :: Python :: 3.7', | ||
], | ||
description="A Pytorch Library to help extend all Knowledge Distillation works", | ||
install_requires=requirements, | ||
license="MIT license", | ||
long_description=LONG_DESCRIPTION, | ||
include_package_data=True, | ||
keywords=KEYWORDS, | ||
name='KD_Lib', | ||
packages=find_packages(where=PROJECT), | ||
setup_requires=setup_requirements, | ||
test_suite="tests", | ||
tests_require=test_requirements, | ||
url="https://github.com/SforAiDL/KD_Lib", | ||
version='0.0.29', | ||
zip_safe=False, | ||
) | ||
author="Het Shah", | ||
author_email="[email protected]", | ||
classifiers=[ | ||
"Development Status :: 2 - Pre-Alpha", | ||
"Intended Audience :: Developers", | ||
"License :: OSI Approved :: MIT License", | ||
"Natural Language :: English", | ||
"Programming Language :: Python :: 3.6", | ||
"Programming Language :: Python :: 3.7", | ||
], | ||
description="A Pytorch Library to help extend all Knowledge Distillation works", | ||
install_requires=requirements, | ||
license="MIT license", | ||
long_description=LONG_DESCRIPTION, | ||
include_package_data=True, | ||
keywords=KEYWORDS, | ||
name="KD_Lib", | ||
packages=find_packages(where=PROJECT), | ||
setup_requires=setup_requirements, | ||
test_suite="tests", | ||
tests_require=test_requirements, | ||
url="https://github.com/SforAiDL/KD_Lib", | ||
version="0.0.29", | ||
zip_safe=False, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
from KD_Lib.utils import Pipeline | ||
from KD_Lib.KD import VanillaKD | ||
from KD_Lib.Pruning import Lottery_Tickets_Pruner | ||
from KD_Lib.Quantization import Dynamic_Quantizer | ||
from KD_Lib.models import Shallow | ||
|
||
import torch | ||
|
||
|
||
train_loader = torch.utils.data.DataLoader( | ||
datasets.MNIST( | ||
"mnist_data", | ||
train=True, | ||
download=True, | ||
transform=transforms.Compose( | ||
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] | ||
), | ||
), | ||
batch_size=32, | ||
shuffle=True, | ||
) | ||
|
||
test_loader = torch.utils.data.DataLoader( | ||
datasets.MNIST( | ||
"mnist_data", | ||
train=False, | ||
transform=transforms.Compose( | ||
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] | ||
), | ||
), | ||
batch_size=32, | ||
shuffle=True, | ||
) | ||
|
||
|
||
def test_Pipeline(): | ||
teacher = Shallow(hidden_size=400) | ||
student = Shallow(hidden_size=100) | ||
|
||
t_optimizer = optim.SGD(teac.parameters(), 0.01) | ||
s_optimizer = optim.SGD(stud.parameters(), 0.01) | ||
|
||
distiller = VanillaKD( | ||
teacher, student, train_loader, test_loader, t_optimizer, s_optimizer | ||
) | ||
|
||
pruner = Lottery_Tickets_Pruner(student, train_loader, test_loader) | ||
|
||
quantizer = Dynamic_Quantizer(student, test_loader, {torch.nn.Linear}) | ||
|
||
pipe = Pipeline([distiller, pruner, quantizer], 1) | ||
pipe.train() |