Skip to content

Sapphirine/202005-Event-Linkage-and-Impact-Prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

202005-Event-Linkage-and-Impact-Prediction

Stock Price Prediction with BERT and XGBoost using Twitter data

Demo

Predicted New Price on One Day

image

Speed Up Animation

image

Prerequisites

pip install -r requirements.txt

Pipeline

  • Tweet Scraping
python ./twint/twitter_scraper.py
  • Feature Extraction w./ pre-processing
    • see 1. feature_generator + sentiment.ipynb
    • download the BERT model from here and place it according to the directory shown in the following command.
bert-serving-start -model_dir ./model/tmp/english_L-12_H-768_A-12/ -num_worker=1
  • Feature Aggregation

    • see 2. feature_aggregator + sentiment.ipynb
  • Classification Test with price-feature

    • see 3. EDA_stock + XGBoost.ipynb
  • Regression Test with all features

    • see 4. XGBoost for Regression.ipynb

Setup for web application

endpoints occupied:

API Port
feature extraction 12347
database 12346
XGBoost 12345
CORS proxy 12340
  • under ./api folder
python feature_api.py
python database_api.py
python xgboost_api.py
  • under ./cors-anywhere folder
node server.js
  • open ./visualize/index/html to see the web app

Contributing

You can Contribute to this project with issues or pull requests.

Release Notes

See RELEASE NOTES file.

License

See MIT LICENSE file.

Contact

If you have any ideas, feedback, requests or bug reports, you can reach me at [email protected]

About

Stock Price Prediction with BERT and XGBoost using Twitter data

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •