Pytorch code for the submission:
SeRO: Self-Supervised Reinforcement Learning for Recovery from Out-of-Distribution Situations, IJCAI 2023
- mujoco200 (https://www.roboti.us/)
$ conda env create -f env.yml
$ conda activate sero
$ cd ~/directory/to/repository/
$ . scripts/train_{algo}_half_cheetah_normal.sh
$ cd ~/directory/to/repository/
$ . scripts/train_{algo}_hopper_normal.sh
$ cd ~/directory/to/repository/
$ . scripts/train_{algo}_walker2d_normal.sh
$ cd ~/directory/to/repository/
$ . scripts/train_{algo}_ant_normal.sh
$ cd ~/directory/to/repository/
$ . scripts/train_{algo}_half_cheetah_ood.sh
$ cd ~/directory/to/repository/
$ . scripts/train_{algo}_hopper_ood.sh
$ cd ~/directory/to/repository/
$ . scripts/train_{algo}_walker2d_ood.sh
$ cd ~/directory/to/repository/
$ . scripts/train_{algo}_ant_ood.sh
$ cd ~/directory/to/repository/log/
$ tensorboard --logdir={env_name}